Publikationen

Bücher, Dissertationen, Paper..

2019

Birger Luhmann
A Flexible Hub Connection for Load Reduction on Two-Bladed Wind Turbines

Kolja Müller
Probabilistic Fatigue Load Assessment for Floating Wind Turbines

2018

Frank Lemmer
Low-Order Modeling, Controller Design and Optimization of Floating Offshore Wind Turbines

Steffen Raach
Lidar-Assisted Wake Redirection Control

2017

Daniel Kaufer
Validation and Applicability of an Integrated Load Simulation Method for Offshore Wind Turbines with Jacket Structures

2016

David Schlipf
Lidar-Assisted Control Concepts for Wind Turbines
DOI

Matthias Arnold
Simulation and Evaluation of the Hydroelastic Responses of a Tidal Current Turbine

Denis Matha
Impact of Aerodynamics and Mooring System on Dynamic Response of Floating Wind Turbines

2013

Mark Capellaro
Aeroelastic Design and Modelling of Bend Twist Coupled Wind Turbine Blades

Tim Andreas Fischer
Mitigation of Aerodynamic and Hydrodynamic Induced Loads of Offshore Wind Turbines

2011

Nicolai Cosack
Fatigue Load Monitoring with Standard Wind Turbine Signals

Zeitschriften, Bücher

  1. 2024

    1. Schulz, C. W., Netzband, S., Özinan, U., Cheng, P. W., & Abdel-Maksoud, M. (2024). Wind turbine rotors in surge motion: new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations. Wind Energy Science, 9(3), Article 3. https://doi.org/10.5194/wes-9-665-2024
  2. 2023

    1. Yu, W., Lemmer, F., & Cheng, P. W. (2023). Modeling and validation of a tuned liquid multi-column damper stabilized floating offshore wind turbine coupled system. Ocean Engineering, 280, 114442. https://doi.org/10.1016/j.oceaneng.2023.114442
  3. 2022

    1. Chen, Y., Guo, F., Schlipf, D., & Cheng, P. W. (2022). Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars. Wind Energy Science, 7(2), Article 2. https://doi.org/10.5194/wes-7-539-2022
    2. Chen, Y., Yu, W., Guo, F., & Cheng, P. W. (2022). Adaptive measuring trajectory for scanning lidars: proof of concept. Journal of Physics: Conference Series, 2265(2), Article 2. https://doi.org/10.1088/1742-6596/2265/2/022099
    3. Kölle, K., Göcmen, T., Garcia-Rosa, P. B., Petrović, V., Eguinoa, I., Vrana, T. K., Long, Q., Pettas, V., Anand, A., Barlas, T. K., Cutululis, N., Manjock, A., Tande, J. O., Ruisi, R., & Bossanyi, E. (2022). Towards integrated wind farm control: Interfacing farm flow and power plant controls. Advanced Control for Applications, 4(2), Article 2. https://doi.org/10.1002/adc2.105
    4. Gaßner, L., Blumendeller, E., Müller, F. J. Y., Wigger, M., Rettenmeier, A., Cheng, P. W., Hübner, G., Ritter, J., & Pohl, J. (2022). Joint analysis of resident complaints, meteorological, acoustic, and ground motion data to establish a robust annoyance evaluation of wind turbine emissions. Renewable Energy, 188(1), Article 1. https://doi.org/10.1016/j.renene.2022.02.081
    5. Blumendeller, E., Hofsäß, M., Goerlitz, A., & Cheng, P. W. (2022). Impact of wind turbine operation conditions on infrasonic and low frequency sound induced by on-shore wind turbines. Journal of Physics: Conference Series, 2265(3), Article 3. https://doi.org/10.1088/1742-6596/2265/3/032048
    6. Yu, W., Lemmer, F., Lehmann, K., Cheng, P. W., de Guzmán, S., Moreu, J., & Battistella, T. (2022, Oktober). Model Test and Validation of the Crown Floating Offshore Wind Turbine. Volume 8: Ocean Renewable Energy. https://doi.org/10.1115/OMAE2022-81065
    7. Lüdecke, F. D., Schmid, M., Rehe, E., Panneer Selvam, S., Parspour, N., & Cheng, P. W. (2022). Numerical Aspects of a Two-Way Coupling for Electro-Mechanical Interactions --- A Wind Energy Perspective. Energies, 15(3), Article 3. https://doi.org/10.3390/en15031178
    8. Pan, Q., & Cheng, P. W. (2022). Cost-based mooring designs and a parametric study of bridles for a 15 MW spar-type floating offshore wind turbine. Journal of Physics: Conference Series, 2265(4), Article 4. https://doi.org/10.1088/1742-6596/2265/4/042013
    9. Bischoff, O., Wolken-Möhlmann, G., & Cheng, P. W. (2022). An approach and discussion of a simulation based measurement uncertainty estimation for a floating lidar system. Journal of Physics: Conference Series, 2265(2), Article 2. https://doi.org/10.1088/1742-6596/2265/2/022077
    10. Kölle, K., Göcmen, T., Eguinoa, I., Alcayaga Román, L. A., Aparicio-Sanchez, M., Feng, J., Meyers, J., Pettas, V., & Sood, I. (2022). FarmConners market showcase results: wind farm flow control considering electricity prices. Wind Energy Science, 7(6), Article 6. https://doi.org/10.5194/wes-7-2181-2022
  4. 2021

    1. Conti, D., Pettas, V., Dimitrov, N., & Peña, A. (2021). Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals. Wind Energy Science, 6(3), Article 3. https://doi.org/10.5194/wes-6-841-2021
    2. Mahfouz, M. Y., Molins, C., Trubat, P., Hernández, S., Vigara, F., Pegalajar-Jurado, A., Bredmose, H., & Salari, M. (2021). Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves. Wind Energy Science, 6(3), Article 3. https://doi.org/10.5194/wes-6-867-2021
    3. Lemmer, F., Yu, W., Steinacker, H., Skandali, D., & Raach, S. (2021). Advances on reduced-order modeling of floating offshore wind turbines. Proceedings of the ASME 40th International Conference on Ocean, Offshore and Arctic Engineering. https://doi.org/10.1115/OMAE2021-63701
    4. Chen, Y., Schlipf, D., & Cheng, P. W. (2021). Parameterization of wind evolution using lidar. Wind Energy Science, 6(1), Article 1. https://doi.org/10.5194/wes-6-61-2021
    5. Zhou, S., Müller, K., Li, C., Xiao, Y., & Cheng, P. W. (2021). Global sensitivity study on the semisubmersible substructure of a floating wind turbine: Manufacturing cost, structural properties and hydrodynamics. Ocean Engineering, 221(2), Article 2. https://doi.org/10.1016/j.oceaneng.2021.108585
    6. Bischoff, O., Wolken-Möhlmann, G., & Cheng, P. W. (2021). Presentation and validation of a simulation environment for floating lidar systems. Journal of Physics: Conference Series, 2018(1), Article 1. https://doi.org/10.1088/1742-6596/2018/1/012009
    7. Pettas, V., Kretschmer, M., Clifton, A., & Cheng, P. W. (2021). On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus. Wind Energy Science, 6(6), Article 6. https://doi.org/10.5194/wes-6-1455-2021
    8. Pan, Q., Mahfouz, M. Y., & Lemmer, F. (2021). Assessment of mooring configurations for the IEA 15MW floating offshore wind turbine. Journal of Physics: Conference Series, 2018(1), Article 1. https://doi.org/10.1088/1742-6596/2018/1/012030
    9. Ocker, C., Blumendeller, E., Berlinger, P., Pannert, W., & Clifton, A. (2021). Localization of wind turbine noise using a microphone array in wind tunnel measurements. Wind Energy, 40(1), Article 1. https://doi.org/10.1002/we.2665
    10. Mahfouz, M. Y., Roser, T., & Cheng, P. W. (2021). Verification of SIMPACK-MoorDyn coupling using 15 MW IEA-Wind reference models Activefloat and WindCrete. Journal of Physics: Conference Series, 2018(1), Article 1. https://doi.org/10.1088/1742-6596/2018/1/012024
    11. Kretschmer, M., Jonkman, J., Pettas, V., & Cheng, P. W. (2021). FAST.Farm load validation for single wake situations at alpha ventus. Wind Energy Science, 6(5), Article 5. https://doi.org/10.5194/wes-6-1247-2021
  5. 2020

    1. Zhou, S., Li, C., Xiao, Y., & Cheng, P. W. (2020). Importance of platform mounting orientation of Y-shaped semi-submersible floating wind turbines: A case study by using surrogate models. Renewable Energy, 156(2), Article 2. https://doi.org/10.1016/j.renene.2020.04.014
    2. Mahfouz, M. Y., Faerron-Guzmán, R., Müller, K., Lemmer, F., & Cheng, P. W. (2020). Validation of drift motions for a semi-submersible floating wind turbine and associated challenges. Journal of Physics: Conference Series, 1669, 012011. https://doi.org/10.1088/1742-6596/1669/1/012011
    3. Özinan, U., Kretschmer, M., Lemmer, F., & Cheng, P. W. (2020). Effects of yaw misalignment on platform motions and fairlead tensions of the OO-Star Wind Floater Semi 10MW floating wind turbine. Journal of Physics: Conference Series, 1618, 052081. https://doi.org/10.1088/1742-6596/1618/5/052081
    4. Kretschmer, M., Raach, S., Taubmann, J., Ruck, N., & Cheng, P. W. (2020). Wake redirection for active power control: a realistic case study. Journal of Physics: Conference Series, 1618, 022059. https://doi.org/10.1088/1742-6596/1618/2/022059
    5. Lemmer, F., Yu, W., Schlipf, D., & Cheng, P. W. (2020). Robust gain scheduling baseline controller for floating offshore wind turbines. Wind Energy, 23(1), Article 1. https://doi.org/10.1002/we.2408
    6. Chen, Y., & Wen Cheng, P. (2020). Comparison of different machine learning algorithms for prediction of wind evolution. Journal of Physics: Conference Series, 1618, 062060. https://doi.org/10.1088/1742-6596/1618/6/062060
    7. von der Grün, M., Zamre, P., Chen, Y., Lutz, T., Voß, U., & Krämer, E. (2020). Numerical study and LiDAR based validation of the wind field in urban sites. Journal of Physics: Conference Series, 1618, 042009. https://doi.org/10.1088/1742-6596/1618/4/042009
    8. Blumendeller, E., Kimmig, I., Huber, G., Rettler, P., & Cheng, P. W. (2020). Investigations on Low Frequency Noises of On-Shore Wind Turbines. Acoustics, 2(2), Article 2. https://doi.org/10.3390/acoustics2020020
    9. Lemmer, F., Yu, W., Luhmann, B., Schlipf, D., & Cheng, P. W. (2020). Multibody modeling for concept-level floating offshore wind turbine design. Multibody System Dynamics, 49(2), Article 2. https://doi.org/10.1007/s11044-020-09729-x
    10. Letzgus, P., Bahlouli, A. E., Leukauf, D., Hofsäß, M., Lutz, T., & Krämer, E. (2020). Microscale CFD Simulations of a Wind Energy Test Site in the Swabian Alps with Mesoscale Based Inflow Data. Journal of Physics: Conference Series, 1618, 062021. https://doi.org/10.1088/1742-6596/1618/6/062021
    11. Yu, W., Lemmer, F., Schlipf, D., & Cheng, P. W. (2020). Loop shaping based robust control for floating offshore wind turbines. Journal of Physics: Conference Series, 1618, 022066. https://doi.org/10.1088/1742-6596/1618/2/022066
    12. Schlipf, D., Lemmer, F., & Raach, S. (2020). Multi-variable feedforward control for floating wind turbines using lidar. In Proceedings of the Thirtieth (2020) International Ocean and Polar Engineering Conference Shanghai.
    13. Lemmer, F., Yu, W., Müller, K., & Cheng, P. W. (2020). Semi-submersible wind turbine hull shape design for a favorable system response behavior. Marine Structures, 71, 102725. https://doi.org/10.1016/j.marstruc.2020.102725
    14. Lüdecke, F. D., & Cheng, P. W. (2020). Simplified design criteria for drivetrains in direct-drive wind turbines. Journal of Physics: Conference Series, 1618, 042024. https://doi.org/10.1088/1742-6596/1618/4/042024
  6. 2019

    1. Veers, P. (Hrsg.). (2019). Wind Power Modelling: Turbines and Systems. The IET.
    2. Siala, K., & Mahfouz, M. Y. (2019). Impact of the choice of regions on energy system models. Energy Strategy Reviews, 25(2), Article 2. https://doi.org/10.1016/j.esr.2019.100362
    3. Lemmer, F., Fröhlich, C., Bischoff, O., Cheng, P. W., & Eca, L. (2019). Modelling uncertainty in the validation of the hydrodynamics of a floating offshore wind turbine. Proceedings of the WESC 2019. https://doi.org/10.5281/zenodo.3362240
    4. Lemmer, F., Yu, W., Zhou, S., & Cheng, P. W. (2019). Systems Engineering for floating wind: Developing tools for integrated design and optimization. Proceedings of the WindEurope Offshore.
    5. Matha, D., Lemmer, F., & Muskulus, M. (2019). Hydrodynamics of Offshore Wind Turbines (in production). In P. Veers (Hrsg.), Wind Power Modelling: Turbines and Systems (Bd. 2). The IET.
    6. Kretschmer, M., Pettas, V., & Cheng, P. W. (2019). Effects of Wind Farm Down-Regulation in the Offshore Wind Farm alpha ventus. ASME 2nd International Offshore Wind Technical Conference. https://doi.org/10.1115/IOWTC2019-7554
    7. Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines. (2019). In W. Yu, F. Lemmer, & P. W. Cheng (Hrsg.), International Conference on Offshore Mechanics and Arctic Engineering: Bd. Volume 10: Ocean Renewable Energy. https://doi.org/10.1115/OMAE2019-96360
    8. Popko, W., Robertson, A., Jonkman, J., Wendt, F., Thomas, P., Müller, K., Kretschmer, M., Ruud Hagen, T., Galinos, C., Le Dreff, J.-B., Gilbert, P., Auriac, B., Oh, S., Qvist, J., Sørum, S. H., Suja-Thauvin, L., Shin, H., Molins, C., Trubat, P., … Harries, R. (2019). Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III.
    9. Zhou, S., Lemmer, F., Yu, W., Cheng, P. W., Li, C., & Xiao, Y. (2019). Optimization of the dynamic response of semi-submersibles: influence of the mooring system. Proceedings of the ASME 2019 2nd International Offshore Wind Technical Conference.
    10. Lemmer, F., & Cheng, P. W. (2019). A new lightweight wave canceling semi-submersible design. WindEurope. https://proceedings.windeurope.org/confex2019/posters/PO046.pdf
  7. 2018

    1. Clifton, A., Clive, P., Gottschall, J., Schlipf, D., Simley, E., Simmons, L., Stein, D., Trabucchi, D., Vasiljevic, N., & Würth, I. (2018). IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar. Remote Sensing, 10(3), Article 3. https://doi.org/10.3390/rs10030406
    2. Bischoff, O., Yu, W., Gottschall, J., & Cheng, P. W. (2018). Validating a simulation environment for floating lidar systems. Journal of Physics: Conference Series, 1037, 052036. https://doi.org/10.1088/1742-6596/1037/5/052036
    3. Pettas, V., & Cheng, P. W. (2018). Down-regulation and individual blade control as lifetime extension enablers. Journal of Physics: Conference Series, 1102, 012026. https://doi.org/10.1088/1742-6596/1102/1/012026
    4. Lemmer, F., Yu, W., & Cheng, P. W. (2018). Iterative frequency-domain response of floating wind turbines with parametric drag. Journal of Marine Science and Engineering, 6(4), Article 4. https://doi.org/10.3390/jmse6040118
    5. Pettas, V., Salari, M., Schlipf, D., & Cheng, P. W. (2018). Investigation on the potential of individual blade control for lifetime extension. Journal of Physics: Conference Series, 1037, 032006. https://doi.org/10.1088/1742-6596/1037/3/032006
    6. Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., & Schlipf, D. (2018). Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results. Wind Energy Science Discussions, 1--17. https://doi.org/10.5194/wes-2018-6
    7. Olondriz, J., Yu, W., Jugo, J., Lemmer, F., Elorza, I., Alonso-Quesada, S., & Pujana-Arrese, A. (2018). Using multiple fidelity numerical models for floating offshore wind turbine advanced control design. Energies, 11(9), Article 9. https://doi.org/10.3390/en11092484
    8. Pegalajar-Jurado, A., Bredmose, H., Borg, M., Straume, J. G., Landbø, T., Andersen, H., Yu, W., Müller, K., & Lemmer, F. (2018). State-of-the-art model for the LIFES50+ OO-Star Wind Floater Semi 10MW floating wind turbine. Journal of Physics: Conference Series, 1104, 012024. https://doi.org/10.1088/1742-6596/1104/1/012024
    9. Clifton, A., Hodge, B.-M., Draxl, C., Badger, J., & Habte, A. (2018). Wind and solar resource data sets. Wiley Interdisciplinary Reviews: Energy and Environment, 7(2), Article 2. https://doi.org/10.1002/wene.276
    10. Kretschmer, M., Schwede, F., Faerron Guzmán, R., Lott, S., & Cheng, P. W. (2018). Influence of atmospheric stability on the load spectra of wind turbines at alpha ventus. Journal of Physics: Conference Series, 1037, 052009. https://doi.org/10.1088/1742-6596/1037/5/052009
    11. Hofsäß, M., Haizmann, F., & Cheng, P. W. (2018). Comparison of different measurement methods for a nacelle-based lidar power curve. Journal of Physics: Conference Series, 1037, 052034. https://doi.org/10.1088/1742-6596/1037/5/052034
    12. Simley, E., Fürst, H., Haizmann, F., & Schlipf, D. (2018). Optimizing Lidars for Wind Turbine Control Applications---Results from the IEA Wind Task 32 Workshop. Remote Sensing, 10(6), Article 6. https://doi.org/10.3390/rs10060863
    13. Hofsäß, M., Clifton, A., & Cheng, P. (2018). Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model Approach. Remote Sensing, 10(9), Article 9. https://doi.org/10.3390/rs10091465
    14. Yu, W., Lemmer, F., Schlipf, D., Cheng, P. W., Visser, B., Links, H., Gupta, N., Dankemann, S., Couñago, B., & Serna, J. (2018). Evaluation of control methods for floating offshore wind turbines. Journal of Physics: Conference Series, 1104(1), Article 1. https://doi.org/10.1088/1742-6596/1104/1/012033
    15. Borisade, F., Koch, C., Lemmer, F., Cheng, P. W., Campagnolo, F., & Matha, D. (2018). Validation of INNWIND.EU Scaled Model Tests of a Semisubmersible Floating Wind Turbine. International Journal of Offshore and Polar Engineering, 28(1), Article 1. https://doi.org/10.17736/ijope.2018.fv04
    16. Lemmer, F. (2018). Low-Order Modeling, Controller Design and Optimization of Floating Offshore Wind Turbines. University of Stuttgart.
    17. Müller, K., Guzman, R. F., Cheng, P. W., Galván, J., Sánchez, M. J., Rodríguez, R., & Manjock, A. (2018). Load Sensitivity Analysis for a Floating Wind Turbine on a Steel Semi-Submersible Substructure. https://doi.org/10.1115/IOWTC2018-1062
    18. Lemmer, F., Yu, W., Cheng, P. W., Pegalajar-Jurado, A., Borg, M., Mikkelsen, R., & Bredmose, H. (2018). The TripleSpar campaign: Validation of a reduced-order simulation model for floating wind turbines. Proceedings of the ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. https://doi.org/10.1115/OMAE2018-78119
    19. Knaus, H., Hofsäß, M., Rautenberg, A., & Bange, J. (2018). Application of Different Turbulence Models Simulating Wind Flow in Complex Terrain: A Case Study for the WindForS Test Site. Computation, 6(3), Article 3. https://doi.org/10.3390/computation6030043
  8. 2017

    1. Müller, K., Dazer, M., & Cheng, P. W. (2017). Damage Assessment of Floating Offshore Wind Turbines Using Response Surface Modeling. Energy Procedia, 137, 119--133. https://doi.org/10.1016/j.egypro.2017.10.339
    2. Müller, K., & Cheng, P. W. (2017). Application of a Monte Carlo Procedure for Probabilistic Fatigue Design of Floating Offshore Wind Turbines. Wind Energy Science Discussions, 1--22. https://doi.org/10.5194/wes-2017-41
    3. Raach, S., Schlipf, D., & Cheng, P. W. (2017). Lidar-based wake tracking for closed-loop wind farm control. Wind Energy Science, 2(1), Article 1. https://doi.org/10.5194/wes-2-257-2017
    4. Fleming, P., Annoni, J., Scholbrock, A., Quon, E., Dana, S., Schreck, S., Raach, S., Haizmann, F., & Schlipf, D. (2017). Full-Scale Field Test of Wake Steering. Journal of Physics: Conference Series, 854, 012013. https://doi.org/10.1088/1742-6596/854/1/012013
    5. Ramachandran, G. K. V., Vita, L., Krieger, A., & Mueller, K. (2017). Design Basis for the Feasibility Evaluation of Four Different Floater Designs. Energy Procedia, 137, 186--195. https://doi.org/10.1016/j.egypro.2017.10.345
    6. Yu, W., Lemmer, F., Bredmose, H., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R. F., Larsen, T. S., Fjelstrup, T., Lomholt, A. K., Boehm, L., Schlipf, D., Armendariz, J. A., & Cheng, P. W. (2017). The Triple Spar Campaign - Implementation and Test of a Blade Pitch Controller on a Scaled Floating Wind Turbine Model. Energy Procedia, 137, 323--338. https://doi.org/10.1016/j.egypro.2017.10.357
    7. Bredmose, H., Lemmer, F., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R. F., Larsen, T. S., Fjelstrup, T., Yu, W., Lomholt, A. K., Boehm, L., & Armendariz, J. A. (2017). The Triple Spar campaign: Model tests of a 10MW floating wind turbine with waves, wind and pitch control. Energy Procedia, 137, 58--76. https://doi.org/10.1016/j.egypro.2017.10.334
    8. Molter, C., & Cheng, P. W. (2017, September). Propeller Performance Calculation for Multicopter Aircraft at Forward Flight Conditions and Validation with Wind Tunnel Measurements. 9th International Micro Air Vehicles Conference and Flight Competition.
  9. 2016

    1. Müller, K., Reiber, M., & Cheng, P. W. (2016). Comparison of Measured and Simulated Structural Loads of an Offshore Wind Turbine at Alpha Ventus. International Journal of Offshore and Polar Engineering, 26(3), Article 3. https://doi.org/10.17736/ijope.2016.fvr01
    2. Schlipf, D., & Raach, S. (2016). Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control. Journal of Physics: Conference Series, 753, 052011. https://doi.org/10.1088/1742-6596/753/5/052011
    3. Raach, S., Schlipf, D., & Cheng, P. W. (2016). Lidar-based wake tracking for closed-loop wind farm control. Journal of Physics: Conference Series, 753, 052009. https://doi.org/10.1088/1742-6596/753/5/052009
    4. Müller, K., & Cheng, P. W. (2016). Validation of Uncertainty in IEC Damage Calculations Based on Measurements from Alpha Ventus. Energy Procedia, 94, 133--145. https://doi.org/10.1016/j.egypro.2016.09.208
    5. Matha, D., Pérez Morán, G., Müller, K., & Lemmer, F. (2016). Comparative Analysis of Industrial Design Methodologies for Fixed-Bottom and Floating Wind Turbines. Comparative Analysis of Industrial Design Methodologies for Fixed-Bottom and Floating Wind Turbines, V006T09A055. https://doi.org/10.1115/OMAE2016-54920
    6. Pettas, V., Barlas, T., Gertz, D., & Madsen, H. A. (2016). Power performance optimization and loads alleviation with active flaps using individual flap control. Journal of Physics: Conference Series, 749, 012010. https://doi.org/10.1088/1742-6596/749/1/012010
    7. Lemmer, F., Raach, S., Schlipf, D., & Cheng, P. W. (2016). Parametric Wave Excitation Model for Floating Wind Turbines. Energy Procedia, 94, 290--305. https://doi.org/10.1016/j.egypro.2016.09.186
    8. Lemmer, F., Schlipf, D., & Cheng, P. W. (2016). Control design methods for floating wind turbines for optimal disturbance rejection. Journal of Physics: Conference Series, 753, 092006. https://doi.org/10.1088/1742-6596/753/9/092006
    9. Barlas, T., Pettas, V., Gertz, D., & Madsen, H. A. (2016). Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis. Journal of Physics: Conference Series, 753, 042001. https://doi.org/10.1088/1742-6596/753/4/042001
    10. Faerron Guzmán, R., & Cheng, P. W. (2016). Recommendations for load validation of an offshore wind turbine with the use of statistical data: Experience from alpha ventus. Journal of Physics: Conference Series, 749, 012017. https://doi.org/10.1088/1742-6596/749/1/012017
    11. Borisade, F., Choisnet, T., & Cheng, P. W. (2016). Design study and full scale MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation. Journal of Physics: Conference Series, 753, 092002. https://doi.org/10.1088/1742-6596/753/9/092002
  10. 2015

    1. Matha, D., Sandner, F., Molins, C., Campos, A., & Cheng, P. W. (2015). Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 373(2035), Article 2035. https://doi.org/10.1098/rsta.2014.0350
    2. Schlipf, D., Simley, E., Lemmer, F., Pao, L., & Cheng, P. W. (2015). Collective Pitch Feedforward Control of Floating Wind Turbines Using Lidar. Journal of Ocean and Wind Energy, 2(4), Article 4. https://doi.org/10.17736/jowe.2015.arr04
    3. Schlipf, D., Haizmann, F., Cosack, N., Siebers, T., & Cheng, P. W. (2015). Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control. Meteorologische Zeitschrift, 24(6), Article 6. https://doi.org/10.1127/metz/2015/0634
  11. 2014

    1. Schlipf, D., Fleming, P., Haizmann, F., Scholbrock, A., Hofsäß, M., Wright, A., & Cheng, P. W. (2014). Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner. Journal of Physics: Conference Series, 555, 12090. https://doi.org/10.1088/1742-6596/555/1/012090
    2. Raach, S., Schlipf, D., Haizmann, F., & Cheng, P. W. (2014). Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data. Journal of Physics: Conference Series, 524, 12005. https://doi.org/10.1088/1742-6596/524/1/012005
    3. Rettenmeier, A., Schlipf, D., Würth, I., & Cheng, P. W. (2014). Power Performance Measurements of the NREL CART-2 Wind Turbine Using a Nacelle-Based Lidar Scanner. Journal of Atmospheric and Oceanic Technology, 31(10), Article 10. https://doi.org/10.1175/JTECH-D-13-00154.1
    4. Valiloo, S., Khosrowjerdi, M. J., & Salari, M. (2014). LMI Based Sliding Mode Surface Design With Mixed H 2 / H $ınfty$ Optimization. Journal of Dynamic Systems, Measurement, and Control, 136(1), Article 1. https://doi.org/10.1115/1.4025553
    5. Markus, D., Arnold, M., Wüchner, R., & Bletzinger, K.-U. (2014). A Virtual Free Surface (VFS) model for efficient wave--current CFD simulation of fully submerged structures. Coastal Engineering, 89, 85--98. https://doi.org/10.1016/j.coastaleng.2014.04.004
    6. Arnold, M., Biskup, F., & Cheng, P. W. (2014). Simulation of Fluid-Structure-Interaction on Tidal Current Turbines based on coupled Multibody and CFD Methods. Journal of Ocean and Wind Energy (JOWE), 1(2), Article 2.
    7. Wildmann, N., Hofsäß, M., Weimer, F., Joos, A., & Bange, J. (2014). MASC – a small Remotely Piloted Aircraft (RPA) for wind energy research. Advances in Science and Research, 11, 55--61. https://doi.org/10.5194/asr-11-55-2014
  12. 2013

    1. Schuler, S., Schlipf, D., Cheng, P. W., & Allgower, F. (2013). Optimal Control of Large Wind Turbines. IEEE Transactions on Control Systems Technology, 21(4), Article 4. https://doi.org/10.1109/TCST.2013.2261068
    2. Schlipf, D., Cheng, P. W., & Mann, J. (2013). Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control. Journal of Atmospheric and Oceanic Technology, 30(10), Article 10. https://doi.org/10.1175/JTECH-D-13-00077.1
    3. Schlipf, D., Schlipf, D. J., & Kühn, M. (2013). Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy, 16(7), Article 7. https://doi.org/10.1002/we.1533
    4. Schlipf, D., & Cheng, P. W. (2013). Adaptive Vorsteuerung für Windenergieanlagen. at - Automatisierungstechnik, 61(5), Article 5. https://doi.org/10.1524/auto.2013.0029

Tagungs- und Konferenzbeiträge

  1. 2024

    1. Bischoff, Oliver, Martin Hofsäß, Dominic Clement, Carolin Schmitt und Po Wen Cheng. 2024. Lidar error in complex terrain - case study based on two measurement campaigns. Journal of Physics: Conference Series 2767, Nr. 4. Journal of Physics: Conference Series (Juni): 042032. doi:10.1088/1742-6596/2767/4/042032, .
    2. Özinan, Umut, Moritz Gräfe, Christian W. Schulz und Po Wen Cheng. 2024. Near-wake measurements and simulations of a floating wind turbine using a four-beam nacelle-based lidar. Journal of Physics: Conference Series 2767, Nr. 9. Journal of Physics: Conference Series (Juni): 092100. doi:10.1088/1742-6596/2767/9/092100, .
  2. 2023

    1. Guo, Feng, David Schlipf, Frank Lemmer, Steffen Raach, Umut Özinan, Raphaël Adam und Thomas Choisnet. 2023. The performance of two control strategies for floating wind turbines: lidar-assisted feedforward and multi-variable feedback. Journal of Physics: Conference Series 2626, Nr. 1. Journal of Physics: Conference Series (November): 012005. doi:10.1088/1742-6596/2626/1/012005, .
    2. Netzband, Stefan, Christian W. Schulz, Umut Özinan, Raphaël Adam, Thomas Choisnet, Po Wen Cheng und Moustafa Abdel-Maksoud. 2023. Validation of a panel method with full-scale FOWT measurements and verification with engineering models. Journal of Physics: Conference Series 2626, Nr. 1. Journal of Physics: Conference Series (November): 012061. doi:10.1088/1742-6596/2626/1/012061, .
    3. Gräfe, Moritz, Umut Özinan und Po Wen Cheng. 2023. Lidar-based virtual load sensors for mooring lines using artificial neural networks. Journal of Physics: Conference Series 2626, Nr. 1. Journal of Physics: Conference Series (November): 012036. doi:10.1088/1742-6596/2626/1/012036, .
    4. Pan, Qi, Feng Guo und Fiona D. Lüdecke. 2023. Nonlinear modelling of shared mooring concepts for floating offshore wind turbines. Journal of Physics: Conference Series 2626, Nr. 1. Journal of Physics: Conference Series (November): 012037. doi:10.1088/1742-6596/2626/1/012037, .
    5. Hofsäß, Martin, Oliver Bischoff, Doron Callies, Dominic Clement, Tobias Klaas-Witt, Carolin Schmitt und Po Wen Cheng. 2023. Statistical comparison of the lidar measurement error of different wind lidar profilers in complex terrain. Zenodo, April. doi:10.5281/zenodo.8378051, .
    6. Schulz, Christian W., Umut Özinan, Stefan Netzband, Po Wen Cheng und Moustafa Abdel-Maksoud. 2023. The Impact of Unsteadiness on the Aerodynamic Loads of a Floating Offshore Wind Turbine. Journal of Physics: Conference Series 2626, Nr. 1. Journal of Physics: Conference Series (November): 012064. doi:10.1088/1742-6596/2626/1/012064, .
  3. 2022

    1. Wolken-Möhlmann, Gerrit, Oliver Bischoff und Julia Gottschall. 2022. Analysis of wind speed deviations between floating lidars, fixed lidar and cup anemometry based on experimental data. Journal of Physics: Conference Series 2362, Nr. 1. Journal of Physics: Conference Series: 012042. doi:10.1088/1742-6596/2362/1/012042, .
    2. Hofsäß, Martin, Oliver Bischoff, Doron Callies, Florian Jäger, Tobias Klaas-Witt und Po-Wen Cheng. 2022. Development of an open source framework for lidar data correction in complex terrain. In: . April. doi:10.5281/zenodo.8376705, .
    3. Gräfe, Moritz, Vasilis Pettas und Po Wen Cheng. 2022. Wind field reconstruction using nacelle based lidar measurements for floating wind turbines. Journal of Physics: Conference Series 2265, Nr. 4. Journal of Physics: Conference Series: 042022. doi:10.1088/1742-6596/2265/4/042022, .
    4. Özinan, Umut, Dexing Liu, Raphaël Adam, Thomas Choisnet und Po Wen Cheng. 2022. Power curve measurement of a floating offshore wind turbine with a nacelle-based lidar. Journal of Physics: Conference Series 2265, Nr. 4. Journal of Physics: Conference Series: 042016. doi:10.1088/1742-6596/2265/4/042016, .
    5. Pan, Qi und Po Wen Cheng, Hrsg. 2022. Sensitivity Analysis of Mooring Tension Fatigue for a 15 MW Spar-Type Floating Offshore Wind Turbine. International Ocean and Polar Engineering Conference. Bd. All Days. International Ocean and Polar Engineering Conference.
    6. Blumendeller, Esther, Laura Gaßner, Florian Müller, Maayen Wigger, Philipp Berlinger und Po Wen Cheng. 2022. Messungen im Bereich eines Windparks mit Fokus auf tief- und niederfrequente Schallemissionen und -immissionen. In: DAGA - Jahrestagung für Akustik, 48:. DAGA - Jahrestagung für Akustik. März. doi:10.18419/opus-12100, .
  4. 2021

    1. Lemmer, Frank, Wei Yu, Heiner Steinacker, Danai Skandali und Steffen Raach. 2021. Advances on reduced-order modeling of floating offshore wind turbines. In: Proceedings of the ASME 40th International Conference on Ocean, Offshore and Arctic Engineering. Proceedings of the ASME 40th International Conference on Ocean, Offshore and Arctic Engineering. doi:10.1115/OMAE2021-63701, .
    2. Trubat, Pau, Climent Molins, Daniel Alarcon, Valentin Arramounet und Mohammad Youssef Mahfouz. 2021. Mooring Fatigue Verification of the WindCrete for a 15 MW Wind Turbine. In: ASME 2021 3rd International Offshore Wind Technical Conference. ASME 2021 3rd International Offshore Wind Technical Conference. American Society of Mechanical Engineers. doi:10.1115/IOWTC2021-3553, .
    3. Mahfouz, M. Y., T. Roser und P. W. Cheng. 2021. Verification of SIMPACK-MoorDyn coupling using 15 MW IEA-Wind reference models Activefloat and WindCrete. Journal of Physics: Conference Series 2018, Nr. 1. Journal of Physics: Conference Series: 012024. doi:10.1088/1742-6596/2018/1/012024, .
  5. 2020

    1. Lemmer, Frank, José Azcona, Henrik Bredmose, Friedemann Borisade, Filippo Campagnolo, Nicolai Francis Heilskov, Daniel Kaufer, u. a. 2020. INNWIND.EU scaled experiments of the OC4-DeepCwind semi-submersible. DaRUS. doi:10.18419/darus-513, .
    2. Robertson, A. N., S. Gueydon, E. Bachynski, L. Wang, J. Jonkman, D. Alarcón, E. Amet, u. a. 2020. OC6 Phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine. In: Proceedings of the Science of Making Torque from Wind Conference, 1618:032033. Proceedings of the Science of Making Torque from Wind Conference. Delft, Netherlands. doi:10.1088/1742-6596/1618/3/032033, .
    3. Lemmer, Frank, Kolja Müller und Wei Yu. 2020. FAST model of the SWE-CPP semi-submersible floating wind turbine platform for the DTU 10MW reference wind turbine. University of Stuttgart. doi:10.18419/darus-621, .
    4. Pettas, Vasilis, Francisco Costa García, Matthias Kretschmer, Jennifer M. Rinker, Andrew Clifton und Po Wen Cheng. 2020. A numerical framework for constraining synthetic wind fields with lidar measurements for improved load simulations. In: AIAA Scitech 2020 Forum. AIAA Scitech 2020 Forum. Juni. doi:10.2514/6.2020-0993, .
    5. Lemmer, Frank, Steffen Raach, David Schlipf, Ricardo Faerron-Guzmán und Po Wen Cheng. 2020. FAST model of the SWE-TripleSpar floating wind turbine platform for the DTU 10MW reference wind turbine. doi:10.18419/darus-514, .
  6. 2019

    1. Chen, Yiyin. 2019. Parameterization of wind evolution model using lidar measurement. In: Wind Energy Science Conference 2019. Wind Energy Science Conference 2019. Cork. doi:10.5281/zenodo.3366119, .
    2. Lemmer, Frank, Christoph Fröhlich, Oliver Bischoff, Po Wen Cheng und L. Eca. 2019. Modelling uncertainty in the validation of the hydrodynamics of a floating offshore wind turbine. In: Proceedings of the WESC 2019. Proceedings of the WESC 2019. doi:10.5281/zenodo.3362240, .
    3. Lemmer, Frank, Wei Yu, Shengtao Zhou und Po Wen Cheng. 2019. Systems Engineering for floating wind: Developing tools for integrated design and optimization. In: Proceedings of the WindEurope Offshore. Proceedings of the WindEurope Offshore. Copenhagen, Denmark.
    4. Kretschmer, Matthias, Vasilis Pettas und Po Wen Cheng. 2019. Effects of Wind Farm Down-Regulation in the Offshore Wind Farm alpha ventus. ASME 2nd International Offshore Wind Technical Conference. ASME 2nd International Offshore Wind Technical Conference. doi:10.1115/IOWTC2019-7554, .
    5. Strohmayer, A. 2019. ASTORIA - Unmanned Aerial Systems Targeted at Open Research & Innovation Actions in Europe. In: 9th EASN International Conference. 9th EASN International Conference. Athens, Greece, September.
    6. Bischoff, Oliver. 2019. Sensitivity analysis of the measurement  performance of floating lidar systems for  different meteorological parameters. In: Wind Energy Science Conference 2019. Wind Energy Science Conference 2019. Cork, Dezember. doi:10.5281/zenodo.3560934, .
    7. Yu, Wei, Frank Lemmer und Po Wen Cheng, Hrsg. 2019. Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines. International Conference on Offshore Mechanics and Arctic Engineering. Bd. Volume 10: Ocean Renewable Energy. International Conference on Offshore Mechanics and Arctic Engineering. doi:10.1115/OMAE2019-96360, .
    8. Zhou, Shengtao, Frank Lemmer, Wei Yu, Po Wen Cheng, Chao Li und Yiqing Xiao. 2019. Optimization of the dynamic response of semi-submersibles: influence of the mooring system. In: Proceedings of the ASME 2019 2nd International Offshore Wind Technical Conference. Proceedings of the ASME 2019 2nd International Offshore Wind Technical Conference. St. Julian’s, Malta: ASME.
  7. 2018

    1. Lemmer, Frank, W. Yu, Chaudhari, A. Pegalajar-Jurado, M. Borg, R. F. Mikkelsen und H. Bredmose. 2018. The TripleSpar campaign: Validation of a reduced-order simulation model for floating wind turbines. In: ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. Juni.
    2. Khaniki, Mohammad Salari, David Schlipf, Vasilis Pettas und Po Wen Cheng. 2018. Control Design For Disturbance Rejection in Wind Turbines. In: 2018 Annual American Control Conference. 2018 Annual American Control Conference. Juni. doi:10.23919/ACC.2018.8431637, .
    3. Khaniki, Mohammad Salari, David Schlipf und Po Wen Cheng. 2018. A Comparison Between LIDAR-Based Feedforward and DAC for Control of Wind Turbines. In: . August. doi:10.1109/CCTA.2018.8511422, .
    4. Popko, Wojciech, Matthias L. Huhn, Amy Robertson, Jason Jonkman, Fabian Wendt, Kolja Müller, Matthias Kretschmer, u. a. 2018. Verification of a Numerical Model of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Within OC5 Phase III (Juni). doi:10.1115/OMAE2018-77589, .
    5. Yu, W., O. Bischoff, P. W. Cheng, G. Wolken-Moehlmann und J. Gottschall. 2018. Validation of a simplified LiDAR-buoy model using open sea measurements. In: ASME 2018 1st International Offshore 2018. ASME 2018 1st International Offshore 2018. San Francisco, USA, November.
    6. Vittori, F., F. Bouchotrouch, Frank Lemmer und J. Azcona. 2018. Hybrid scaled testing of a 5MW floating wind turbine using the SIL method compared with numerical models. In: ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain, Juni.
    7. Lemmer, Frank, Wei Yu, Po Wen Cheng, Antonio Pegalajar-Jurado, Michael Borg, Robert Mikkelsen und Henrik Bredmose. 2018. The TripleSpar campaign: Validation of a reduced-order simulation model for floating wind turbines. In: Proceedings of the ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. Proceedings of the ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain: ASME. doi:10.1115/OMAE2018-78119, .
    8. Kretschmer, M., Kolja Müller, Friedemann Borisade, G. Wiesel und Po Wen Cheng. 2018. Simpack Offshore Wind within the OC5 Phase 3 Project for Tool Validation. In: 4th Wind and Drivetrain Conference. 4th Wind and Drivetrain Conference. Hamburg, April.
  8. 2017

    1. Lemmer, Frank, Kolja Müller, WeiWeiYu Yu, David Schlipf und Po Wen Cheng. 2017. Optimization of floating offshore wind turbine platforms with a self-tuning controller. In: International Conference on Ocean, Offshore & Arctic Engineerin. International Conference on Ocean, Offshore & Arctic Engineerin. Trondheim, Norway, Juni. doi:10.18419/opus-9174, .
    2. Faerron Guzmán, Ricardo, Frank Lemmer, W. Yu, Kolja Müller, Friedemann Borisade und Po Wen Cheng. 2017. Current research on simulations of floating offshore wind turbines. In: 35. CADFEM ANSYS Simulation Conference. 35. CADFEM ANSYS Simulation Conference. Koblenz, November.
    3. Bischoff, O., I. Würth, J. Gottschall, B. Gribben, D. Stein, J. Hughes und H. Verhoef. 2017. Towards Recommended Practices for Floating Lidar Systems. In: EERA DeepWind 2017 Deep Sea 2017. EERA DeepWind 2017 Deep Sea 2017. Trondheim, Norway, Januar.
    4. Raach, Steffen, S. Boersma, J.-W. van Wingerden, David Schlipf und Po Wen Cheng. 2017. Robust lidar-based closed-loop wake redirection for wind farm control. In: 20th World Congress of the International Federation of Automatic Control (IFAC). 20th World Congress of the International Federation of Automatic Control (IFAC). Toulouse, France, Juli.
    5. Kretschmer, M., Po Wen Cheng und Huang C.-C. 2017. Integrated Substructure Analysis for Wind Turbines under Seismic Loading. In: DEWEK 2017. DEWEK 2017. Bremen, Oktober.
    6. Raach, Steffen, J.-W. van Wingerden, S. Boersma, David Schlipf und Po Wen Cheng. 2017. H\_inf controller design for closed-loop wake redirection. In: American Control Conference (ACC). American Control Conference (ACC). Seattle, USA, April.
    7. Molter, C. und Po Wen Cheng. 2017. Propeller Performance Calculation for Multicopter Aircraft at Forward Flight Conditions and Validation with Wind Tunnel Measurements. In: 9th International Micro Air Vehicles Conference and Flight Competition. 9th International Micro Air Vehicles Conference and Flight Competition. Toulouse, France, September.
  9. 2016

    1. Kretschmer, M. und Po Wen Cheng. 2016. Analysis of Two Flow Models for the Simulation of Floating Offshore Wind Farms. In: 12th EAWE PhD Seminar on Wind Energy in Europe. 12th EAWE PhD Seminar on Wind Energy in Europe. Copenhagen, Denmark, Mai.
    2. Luhmann, B., Friedemann Borisade, Steffen Raach und Po Wen Cheng. 2016. Coupled Aero-Elastic Multi-Body Simulation of Two-Bladed Wind Turbines in Wind Park Arrays. In: AIAA conference. AIAA conference. San Diego,  USA, Januar.
    3. Koch, Christian, Frank Lemmer, Friedemann Borisade, Denis Matha und Po Wen Cheng. 2016. Validation of INNWIND.EU scaled model tests of a semisubmersible floating wind turbine. In: International Ocean and Polar Engineering Conference. International Ocean and Polar Engineering Conference. Rhodos, Greece, Juni. doi:10.18419/opus-8967, .
    4. Schlipf, David, Paul Mazoyer, M. Boquet, Steffen Raach, Andrew Scholbrock und Paul Fleming. 2016. High-Frequency Wind Retrieval Algorithms from Nacelle-Mounted Lidars for Wind Turbine Control Applications. In: 18th International Symposium for the Advancement of Boundary-Layer Remote Sensing (ISARS). 18th International Symposium for the Advancement of Boundary-Layer Remote Sensing (ISARS). Varna, Bulgaria, Juli.
    5. Raach, Steffen, David Schlipf, Friedemann Borisade und Po Wen Cheng. 2016. Wake redirecting using feedback control to improve the power output of wind farms. In: American Control Conference (ACC). American Control Conference (ACC). Boston, USA, Juli. doi:10.1109/ACC.2016.7525111, .
    6. Kretschmer, M., M. Arnold und Po Wen Cheng. 2016. Simulating Wind Farms with Simplified Fluid-Structure-Interaction using Ansys CFX and Flexible Multibody Simulation. In: 34. CADFEM Ansys Simulation Conference. 34. CADFEM Ansys Simulation Conference. Nuremberg, Oktober.
  10. 2015

    1. Fateri, M., A. Gebhardt, R. A. Gabrielli, G. Herdrich, S. Fasoulas, A. Großmann, P. Schnauffer und Peter Middendorf. 2015. Additive Manufacturing of Lunar Regolith for Extra-terrestrial Industry Plant. In: 30th ISTS. 30th ISTS. Kobe, USA, Juli.
    2. Haizmann, Florian, David Schlipf, Steffen Raach, Andrew Scholbrock, Alan Wright, C. Slinger, J. Medley, M. Harris, E. Bossanyi und Po Wen Cheng. 2015. Optimization of a feed-forward controller using a CW-lidar system on the CART3. In: American Control Conference. American Control Conference. Chicago, USA, Juli.
    3. Sandner, Frank, F. Amann, J. Azcona, X. Munduate, C. L. Bottasso, Filippo Campagnolo, H. Bredmose, A. Manjock, R. Pereira und A. Robertson. 2015. Model Building and Scaled Testing of 5MW and 10MW Semi-Submersible Floating Wind Turbines. In: EERA Deepwind. EERA Deepwind. Trondheim, Norway, Februar.
    4. Bischoff, O., D. Schlipf, I. Würth und P. W. Cheng. 2015. Dynamic Motion Effects and Compensation Methods of a Floating Lidar Buoy. In: EERA DeepWind 2015 Deep Sea Offshore Wind Conference. EERA DeepWind 2015 Deep Sea Offshore Wind Conference. Trondheim, Norway, Februar.
    5. Arnold, M., F. Biskup und Po Wen Cheng. 2015. Load Reduction Potential of Variable Speed Control Approaches for Fixed Pitch Tidal Current Turbines. In: 11th European Wave and Tidal Energy Conference. 11th European Wave and Tidal Energy Conference. Nantes, France, September.
    6. Raach, Steffen, David Schlipf, J. J. Trujillo und Po Wen Cheng. 2015. Model-based wake tracking using lidar measurements for wind farm control. In: Windfarms 2015 conferences. Windfarms 2015 conferences. Leuven, Belgium, Juli.
    7. Matha, Denis, F. Beyer, Frank Lemmer und Po Wen Cheng. 2015. Model Testing and Numerical Simulation in Floating Offshore Wind Turbine Design - Overview and Conclusions from practical Applications. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, Mai.
    8. Manjock, A., H. Bredmose, J. Azcona, Frank Lemmer, F. Amann und Filippo Campagnolo. 2015. Rotor Aerodynamics For Tank Tests Of Scaled Floating Wind Turbines. In: EWEA Offshore. EWEA Offshore. Copenhagen, Denmark, März.
    9. Wortmann, S., Florian Haizmann, J. Geisler und U. Konigorski. 2015. Comparison of Feedback and Ideal and Realistic Lidar-Assisted Feedforward Individual Pitch Control. In: Scientific Track of European Wind Energy Association Annual Event (EWEA). Scientific Track of European Wind Energy Association Annual Event (EWEA). Paris, France, November.
    10. Hofsäß, Martin, D. Kozlowski, Tom Siebers und Po Wen Cheng. 2015. Comparison of the Rotor Equivalent Wind Speed of Ground- and Nacelled-Based LIDAR. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, Mai.
    11. Tiana-Alsina, J., M. A. Gutierrez, Ines Würth, J. Puigdefabregas und F. Rocadenbosch. 2015. Motion compensation study for a floating Doppler wind lidar. In: IGARSS. IGARSS. Milan, Italy, Juli.
    12. Fürst, H., David Schlipf, M. Iribas Latour und Po Wen Cheng. 2015. Design and evaluation of a lidar-based feedforward controller for the INNWIND.EU 10 MW wind turbine. In: European Wind Energy Association Annual Event (EWEA). European Wind Energy Association Annual Event (EWEA). Paris, France, November.
    13. Beyer, F., B. Luhmann, Steffen Raach und Po Wen Cheng. 2015. Shadow Effects in an Offshore Wind Farm - Potential of Vortex Methods for Wake Modelling. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, Mai.
    14. Beyer, F., T. Choisnet, M. Kretschmer und Po Wen Cheng. 2015. Coupled MBS-CFD Simulation of the IDEOL Floating Offshore Wind Turbine Foundation Compared to Wave Tank Model Test Data. In: 25th ISOPE. 25th ISOPE. Kona, USA, Juni.
    15. Trujillo, J. J., H. Beck, Kolja Müller, Po Wen Cheng und Martin Kühn. 2015. Detailed validation of dynamic loading simulation of offshore wind turbines operating in wake. In: RAVE Offshore Wind R&D Conference. RAVE Offshore Wind R&D Conference. Bremerhaven, Oktober.
    16. Beyer, F., T. Choisnet, M. Favré und Po Wen Cheng. 2015. Simplified Aerodynamic Models with Limited Rotor Data for the Design of Floating Offshore Wind Turbine Support Structures. In: EWEA Offshore. EWEA Offshore. Copenhagen, Denmark, März.
    17. Biskup, F., M. Arnold, P. Daus und L. Engbroks. 2015. Actuator Disc Model of a Tidal In-Stream Energy Converter - Voith HyTide. In: 25th ISOPE. 25th ISOPE. Kona, USA, Juni.
    18. Arnold, M., F. Biskup und Po Wen Cheng. 2015. Impact of Structural Flexibility on Loads on Tidal Current Turbines. In: 11th European Wave and Tidal Energy Conference. 11th European Wave and Tidal Energy Conference. Nantes, France, September.
    19. Raach, Steffen, David Schlipf, Florian Haizmann, F. Fürst, Ines Würth und Po Wen Cheng. 2015. Advances in lidar-assisted control and power curve measurement of wind turbines in the LIDAR II project. In: EWEA Offshore. EWEA Offshore. Copenhagen, Denmark, März.
    20. Beyer, F. und Po Wen Cheng. 2015. Load Simulation of Offshore Wind Turbines - Modeling Techniques and Validation by Measurements. In: SIMPACK Wind and Drivetrain Conference 2015. SIMPACK Wind and Drivetrain Conference 2015. Hamburg, Oktober.
    21. Haizmann, Florian, David Schlipf und Po Wen Cheng. 2015. Correlation-Model of Rotor-Effective Wind Shears and Wind Speed for LiDAR-based Individual Pitch Control. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, Mai.
    22. Würth, Ines, Florian Haizmann, J. Anger, David Schlipf, Martin Hofsäß, Steffen Raach und Po Wen Cheng. 2015. Four years of nacelle-based lidar measurements in alpha ventus - a review. In: RAVE Offshore Wind R&D Conference. RAVE Offshore Wind R&D Conference. Bremerhaven, Oktober.
    23. Schlipf, David, Paul Fleming, Steffen Raach, Andrew Scholbrock, Florian Haizmann, R. Krishnamurthy, M. Boquet und Po Wen Cheng. 2015. An adaptive data processing technique for lidar-assisted control to bridge the gap between lidar systems and wind turbines. In: European Wind Energy Association Annual Event (EWEA). European Wind Energy Association Annual Event (EWEA). Paris, France, November.
    24. Würth, Ines und et. al. 2015. Determination of stationary and dynamical power curves in inhomogeneous wind flow using a nacelle-based lidar system. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, Mai.
    25. Arnold, M., M. Kretschmer, F. Biskup, J. Koch und Po Wen Cheng. 2015. A Validation Method for Fluid-Structure-Interaction Simulations Based on Submerged Free Decay Experiments. In: 25th ISOPE. 25th ISOPE. Kona, USA, Juni.
    26. Sandner, Frank, W. Yu und Po Wen Cheng. 2015. Parameterized Dynamic Modelling Approach for Conceptual Dimensioning of a Floating Wind Turbine System. In: EERA Deepwind. EERA Deepwind. Trondheim, Norway, Februar.
    27. Raach, Steffen, David Schlipf, J. J. Trujillo, Po Wen Cheng und P. W. 2015. Lidar-based wake tracking for wind farm control at alpha ventus. In: RAVE Offshore Wind R&D Conference. RAVE Offshore Wind R&D Conference. Bremerhaven, Oktober.
    28. Gutierrez, M. A., J. Tiana-Alsina, O. Bischoff, J. Cateura und F. Rocadenbosch. 2015. Performance evaluation of a floating Doppler wind lidar buoy in mediterranean near-shore conditions. In: International Geoscience and Remote Sensing 2015. International Geoscience and Remote Sensing 2015. Milan, Italy, November.
    29. Faerron Guzmán, Ricardo, S. Lott, Kolja Müller und Po Wen Cheng. 2015. Evaluation of the Extreme and Fatigue Load Measurements at Alpha Ventus. In: RAVE International Conference. RAVE International Conference. Bremerhaven, Oktober.
    30. Lemmer, Frank, Steffen Raach, David Schlipf und Po Wen Cheng. 2015. Prospects of Linear Model Predictive Control on a 10MW Floating Wind Turbine. In: Proceedings of the ASME 34th International Conference on Ocean & Offshore and Arctic Engineering. Proceedings of the ASME 34th International Conference on Ocean & Offshore and Arctic Engineering. St. John’s, Kanada, Juni.
  11. 2014

    1. Raach, Steffen, David Schlipf, Florian Haizmann und Po Wen Cheng. 2014. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data. In: Journal of Physics: Conference Series. Journal of Physics: Conference Series. Copenhagen, Denmark.
    2. Arnold, M., R. Daus, F. Biskup und Po Wen Cheng. 2014. Tidal Current Turbine Wake and Park Layout in transient Environments. In: 33rd OMAE. 33rd OMAE. Juli.
    3. Trujillo, J. J., J. K. Seifert, Martin Kühn, David Schlipf und Ines Würth. 2014. Measuring wind turbine yaw misalignment by near wake tracking. In: EWEA Annual Event. EWEA Annual Event. Barcelona, Spain, März.
    4. Bischoff, O., Ines Würth, Po Wen Cheng, J. Tiana Alsina und M. A. Gutierrez. 2014. Motion effects on lidar wind measurement data of the EOLOS buoy. In: RENEW. RENEW. Lisbon, Portugal, November.
    5. Raach, Steffen, David Schlipf, Frank Sandner, Denis Matha und Po Wen Cheng. 2014. Nonlinear Model Predictive Control of Floating Wind Turbines with Individual Pitch Control. In: American Control Conference. American Control Conference. Portland, USA, Juni.
    6. Böhler, Patrick, Stefan Carosella, C. Götz und Peter Middendorf. 2014. Path definition for tailored fiber placement structures using numerical reverse draping approach. In: ESAFORM2015. ESAFORM2015. Graz, Austria, April.
    7. Beyer, F., Denis Matha, M. Arnold, B. Luhmann und Po Wen Cheng. 2014. Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines. In: Simpack User Meeting 2014. Simpack User Meeting 2014. Augsburg, Oktober.
    8. Beyer, F. und Po Wen Cheng. 2014. Dynamic Behaviour of Floating Offshore Wind Turbines. In: IEA R&D Wind Task XI. IEA R&D Wind Task XI. Las Palmas, Spain, April.
    9. Schlipf, David, P. Grau, Steffen Raach, R. Duraiski, J. Trierweiler und Po Wen Cheng. 2014. Comparison of linear and nonlinear model predictive control of wind turbines using LIDAR. In: American Control Conference. American Control Conference. Portland, USA, Juni.
    10. Molins, C., Alexis Campos, Frank Sandner und Denis Matha. 2014. Monolithic Concrete Off-Shore Floating Structure For Wind Turbines. In: Proceedings of the EWEA. Proceedings of the EWEA. Barcelona, Spain, Mai.
    11. Müller, Kolja, Frank Sandner, H. Bredmose, J. Azcona, A. Manjock und R. Pereira. 2014. Improved Tank Test Procedures For Scaled Floating Offshore Wind Turbines. In: International Wind Engineering Conference IWEC. International Wind Engineering Conference IWEC. Hannover, September.
    12. Beyer, F., M. Arnold und Po Wen Cheng. 2014. Simulation of Ocean Waves for Load Assessment of Surface Piercing and Fully Submerged Bodies with Ansys CFX. In: Ansys Conference 32. CADFEM User’s Meeting 2014. Ansys Conference 32. CADFEM User’s Meeting 2014. Nürnberg, Juni.
    13. Sandner, Frank, David Schlipf, Denis Matha und Po Wen Cheng. 2014. Integrated Optimization of Floating Wind Turbine Systems. In: 33rd International Conference on Ocean & Offshore and Arctic Engineering OMAE. 33rd International Conference on Ocean & Offshore and Arctic Engineering OMAE. San Francisco, USA, Juni.
    14. Robertson, A. und F. Beyer. 2014. Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System. In: 33rd International Conference on Ocean & Offshore and Arctic Engineering (OMAE). 33rd International Conference on Ocean & Offshore and Arctic Engineering (OMAE). San Francisco, USA, Juni.
    15. Haizmann, Florian, David Schlipf, Nicolai Cosack, D. Neuhaus, Steffen Raach, T. Maul und Po Wen Cheng. 2014. Field Testing of LiDAR assisted Feed-Forward Control on a Large Commercial Wind Turbine. In: EWEA Annual Event. EWEA Annual Event. Barcelona, Spain, März.
  12. 2013

    1. Markus, D., R. Wüchner, M. Arnold, K. U Bletzinger und M. Hojjat. 2013. A reduced modeling Methodology for efficient Ocean Wave CFD Simulation of fully submerged Structures. In: 32nd OMAE. 32nd OMAE. Juli.
    2. Arnold, M. und Po Wen Cheng. 2013. Simulation of Fluid-Structure-Interaction on Tidal Current Turbines with flexible Multibody Systems and Ansys CFX. In: 31st ACUM. 31st ACUM. Juni.
    3. Härer, A., Denis Matha, D. Kucher und Frank Sandner. 2013. Optimization of offshore wind turbine components in multi-body simulations for cost and load reduction. In: EWEA Offshore. EWEA Offshore. Frankfurt.
    4. Haizmann, Florian und Po Wen Cheng. 2013. Advanced Lidar-Assisted Control of Wind Turbines. In: 9th EAWE PhD Seminar on Wind Energy in Europe. 9th EAWE PhD Seminar on Wind Energy in Europe. Visby, September.
    5. Galappathithi, U.I.K., A. K. Pickett, Milos Draskovic, Marc Capellaro und De Silva. A. K. M. 2013. The Effect of Ply Waviness for the Fatigue Life of Composite Wind Turbine Blades. In: ICREPQ 13  (RE&PQJ). ICREPQ 13  (RE&PQJ). Bilbao.
    6. Draskovic, Milos, U.I.K. Galappathithi, A. K. Pickett, Marc Capellaro und Peter Middendorf. 2013. Influence of ply waviness on residual strength and fatigue degradation of composite wind turbine blades. In: ICCM19. ICCM19. Montreal.
    7. Schlipf, David, Frank Sandner, Steffen Raach, Denis Matha und Po Wen Cheng. 2013. Nonlinear Model Predictive Control of Floating Wind Turbines. In: ISOPE. ISOPE. Anchorage, USA, Juli.
    8. Schlipf, David. 2013. Lidars and Wind Turbine Control - Part 1 (Chapter 9 in Remote Sensing for Wind Energy). In: DTU Wind Energy-E-Report-0029(EN). DTU Wind Energy-E-Report-0029(EN). Roskilde.
    9. Beyer, F., M. Arnold und Po Wen Cheng. 2013. Analysis of Floating Offshore Wind Turbine Hydrodynamics using coupled CFD and Multibody Methods. In: 23rd International Ocean and Polar Engineering Conference (ISOPE). 23rd International Ocean and Polar Engineering Conference (ISOPE). Anchorage, USA, Juni.
    10. Haizmann, Florian, Paul Fleming, David Schlipf, Andrew Scholbrock, Martin Hofsäß, Alan Wright und Po Wen Cheng. 2013. Implementation of an Online Correlation Analysis for an Adaptive LiDAR based Feed-Forward Controller for Wind Turbines. In: EWEA Annual Event. EWEA Annual Event. Vienna, Februar.
    11. Schlipf, David, Paul Fleming, Kapp, Andrew Scholbrock, Florian Haizmann, Belen, Alan Wright und Po Wen Cheng. 2013. Direct Speed Control Using LIDAR and Turbine Data. In: American Control Conference. American Control Conference. Washington.
    12. Arnold, M., F. Biskup, Denis Matha und Po Wen Cheng. 2013. Simulation of Rotor-Foundation-Interaction on Tidal Current Turbines with Computational Fluid Dynamics. In: 10th EWTEC. 10th EWTEC. September.
    13. Sandner, Frank und Po Wen Cheng. 2013. Conceptual design of floating wind turbines. In: In Proceedings of the 9th PhD Seminar on Wind Energy in Europe. In Proceedings of the 9th PhD Seminar on Wind Energy in Europe. Visby.
    14. Biskup, F., M. Arnold, P. Daus, R. Arlitt und M. Hohberg. 2013. Effects of Rotor Blade Tip Modifications on a Tidal In-Stream Energy Converter - Voith HyTide. In: 10th EWTEC. 10th EWTEC. September.
    15. Scholbrock, Andrew, Paul Fleming, Fingersh, Alan Wright, David Schlipf, Florian Haizmann und Belen. 2013. Field Testing LIDAR-Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine.
    16. Arnold, M., F. Biskup und Po Wen Cheng. 2013. Simulation of Fluid-Structure-Interaction on Tidal Current Turbines based on coupled Multibody and CFD Methods. In: 23rd ISOPE. 23rd ISOPE. Juni.
  13. 2012

    1. Schlipf, David, J. Anger, O. Bischoff, Martin Hofsäß, Andreas Rettenmeier, Ines Würth, Siegmeier und Po Wen Cheng. 2012. Lidar Assisted Wind Turbine Control. In: RAVE International Conference. RAVE International Conference. Bremerhaven, Mai.
    2. Rettenmeier, Andreas, J. Anger, O. Bischoff, Martin Hofsäß, David Schlipf, Ines Würth und Po Wen Cheng. 2012. Development of Lidar wind measurement techniques. In: RAVE International Conference. RAVE International Conference. Bremerhaven, Mai.
    3. Beyer, F. und Po Wen Cheng. 2012. Dynamic Behaviour of Floating Offshore Wind Turbines. In: 8th PhD Seminar on Wind Energy in Europe. 8th PhD Seminar on Wind Energy in Europe. Zurich, September.
    4. Schlipf, David, Andreas Rettenmeier, Florian Haizmann, Martin Hofsäß, M. Courtney und Po Wen Cheng. 2012. Model Based Wind Vector Field Reconstruction from Lidar Data. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, November.
    5. Matha, Denis, Frank Sandner und David Schlipf. 2012. Efficient Critical Design Load Case Identification for Floating Offshore Wind Turbines with a Reduced Nonlinear Model. In: The Science of Making Torque from Wind. Oldenburg. The Science of Making Torque from Wind. Oldenburg. September.
    6. Würth, Ines, Andreas Rettenmeier, David Schlipf, Po Wen Cheng, Wächter, Rinn und Peinke. 2012. Determination of Stationary and Dynamical Power Curves Using a Nacelle-based LIDAR System. In: German Wind Energy Conference (DEWEK). German Wind Energy Conference (DEWEK). Bremen, November.
    7. Beyer, F., Denis Matha, Sebastian und Lackner. 2012. Development, Validation and Application of a Curved Vortex Filament Model for Free Vortex Wake Analysis of Floating Offshore Wind Turbines. In: 50th AIAA Aerospace Sciences Meeting and Exhibit. 50th AIAA Aerospace Sciences Meeting and Exhibit. USA, Januar.
    8. Sandner, Frank, David Schlipf, Denis Matha, Seifried, R und Po Wen Cheng. 2012. Reduced Nonlinear Model of a Spar-Mounted Floating Wind Turbine. In: German Wind Energy Conference DEWEK. Bremen. German Wind Energy Conference DEWEK. Bremen. Germany, Oktober.
    9. Rettenmeier, Andreas, J. Anger, O. Bischoff, Martin Hofsäß, David Schlipf und Ines Würth. 2012. Nacelle-Based Lidar Systems. In: Summer School:Remote Sensing for Wind Energy. Summer School:Remote Sensing for Wind Energy. Juni.
    10. Arnold, M. und Po Wen Cheng. 2012. Fluid-Structure-Interaction on Tidal Current Turbines. In: 8th EAWE-PhD-Summerschool. 8th EAWE-PhD-Summerschool. September.
    11. Schuon, F., D. González, F. Rocadenbosch, O. Bischoff und R. Jané. 2012. KIC InnoEnergy Project Neptune: development of a floating LiDAR buoy for wind, wave and current measurements. In: German Wind Energy Conference 2012. German Wind Energy Conference 2012. Bremen, November.
  14. 2011

    1. Beyer, F., Sebastian und Denis Lackner Matha. 2011. Curved Vortex Filaments in Free Vortex Wake Analysis of Floating Wind Turbines. In: EWEA Offshore 2011. EWEA Offshore 2011. Niederlande, November.
    2. Bischoff, O., M. Hofsäß und P. W. Cheng. 2011. Wind turbine simulation in flat and complex terrain using generic wind fields based on lidar and sonic measurement data. In: European Wind Energy Association Annual Conference and Exhibition 2015, EWEA 2015. European Wind Energy Association Annual Conference and Exhibition 2015, EWEA 2015. Paris, France, November.

Daten und Software

    Zum Seitenanfang