Forschung

 Querschnittsbereiche

 Lehre

 Praktikantenamt

 Fastlinks

 

 

 

 

 

 

 

 

 


 

Frank Lemmer

Herr Dipl.-Ing.
Frank Lemmer geb. Sandner
Wissenschaftlicher Mitarbeiter

Dieses Bild zeigt  Frank Lemmer geb. Sandner
Telefon 0049 711 685-68332
Telefax0049 711 685-68293
Raum2.38
E-Mail
Adresse
Universität Stuttgart
Institut für Flugzegbau
Allmandring 5b
70569 Stuttgart
Deutschland
Sprechstunde

Nach Vereinbarung.


Fachgebiet:
  • PhD project: "Conceptioning, modeling and control of floating wind turbine systems."
  • Multibody system dynamics
  • Linear, frequency-domain models
  • Control engineering
  • Offshore engineering
  • Involvement in previous and ongoing research projects:
    • H2020-LIFES50+, Qualification of innovative floating substructures for 10MW wind turbines and water depths greater than 50m
    • FP-7 INNWIND.EU, Innovative wind conversion systems (10-20MW) for offshore applications
    • KIC-AFOSP, Alternative floating offshore support platforms for wind turbines
    • FP-7 FLOATGEN, Demonstration and benchmarking of a wind turbine in Atlantic Ocean
Publikationen:

Publications in Peer Reviewed Journals including Conference Series
[7]      Borisade, F., Koch, C., Lemmer, F., Cheng, P. W., & Matha, D. Validation of INNWIND.EU scaled model tests of a semisubmersible floating wind turbine. International Journal of Offshore and Polar Engineering, vol. 28, 2018, doi: 10.17736/ijope.2018.fv04
[6]      Yu, W., Lemmer, F., Bredmose, H., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R. F., Stoklund Larsen, T., Fjelstrup, T., Yu, W., Lomholt, A.K., Boehm, Azcona, J. The TripleSpar Campaign: Implementation and test of a blade pitch controller on a scaled floating wind turbine model. Energy Procedia, vol. 137, 2017. doi: 10.1016/j.egypro.2017.10.334
[5]      Bredmose, H., Lemmer, F., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R. F., Stoklund Larsen, T., Fjelstrup, T., Yu, W., Lomholt, A.K., Boehm, L., Azcona, J. The TripleSpar campaign: Model tests of a 10MW floating wind turbine with waves, wind and pitch control. Energy Procedia, vol. 137, 2016. doi: 10.1016/j.egypro.2017.10.334
[4]     Lemmer, F., Schlipf, D., & Cheng, P. W. Control design methods for floating wind turbines for optimal disturbance rejection. Journal of Physics: Conference Series, vol. 753, 2016. doi: 10.18419/opus-8906
[3]      Lemmer, F., Raach, S., Schlipf, D. and Cheng, P.W. Parametric wave excitation model for floating wind turbines. Energy Procedia, 2016. doi: 10.1016/j.egypro.2016.09.186.
[2]      Matha, D., Sandner, F., Molins, C., Campos, A. and Cheng, P.W. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design. Phil. Trans. R. Soc. A, vol. 373, 2015. doi: 10.1098/rsta.2014.0350.
[1]      Matha, D., Sandner, F. and Schlipf, D. Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model. Journal of Physics: Conference Series, vol. 555, 2012. doi: 10.1088/1742-6596/555/1/012069.

Publications in Peer Reviewed Conference Proceedings
[9]      Lemmer, F., Yu, W., Cheng, P. W., Pegalajar-Jurado, A., Borg, M., Mikkelsen, R., & Bredmose, H. (2018). The TripleSpar campaign: Validation of a reduced-order simulation model for floating wind turbines. Proceedings of ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. (Madrid, Spain), 2018.
[8]      Vittori, F., Bouchotrouch, F., Lemmer, F., & Azcona, J. Hybrid scaled testing of a 5MW floating wind turbine using the SIL method compared with numerical models. ASME 37th International Conference on Ocean, Offshore and Arctic Engineering, (Madrid, Spain), 2018.
[7]      Lemmer, F., Müller, K., Yu, W., Schlipf, D., & Cheng, P. W. Optimization of floating offshore wind turbine platforms with a self-tuning controller. ASME 36th International Conference on Ocean, Offshore and Arctic Engineering. (Trondheim, Norway) 2017, link author version.
[6]      Lemmer, F., Raach, S., Schlipf, D. and Cheng, P.W. Prospects of linear model predictive control on a 10MW floating wind turbine. ASME 34th International Conference on Ocean, Offshore and Arctic Engineering (St. John’s, Canada), 2015, link author version.
[5]      Molins, C., Campos, A., Sandner, F. and Matha, D. Monolithic concrete offshore floating structure for wind turbines. European Wind Energy Association (EWEA) Offshore Conference (Barcelona, Spain) , 2014.
[4]      Raach, S., Schlipf, D., Sandner, F., Matha, D. and Cheng, P.W. Nonlinear model predictive control of floating wind turbines with individual pitch control. American Control Conference ACC (Portland, USA), 2014, link author version.
[3]      Sandner, F., Schlipf, D., Matha, D. and Cheng, P.W. Integrated optimization of floating wind turbine systems. ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, volume 9B (San Francisco, USA), 2014, link author version.
[2]      Schlipf, D, Sandner, F., Raach, S., Matha, D. and Cheng, P.W. Nonlinear Model Predictive Control of Floating Wind Turbines, International Offshore and Polar Engineering, pp. 440-447, (Anchorage, USA), July 2013, link author version.
[1]      Härer, A., Matha, D., Kucher, D. and Sandner, F. Optimization of offshore wind turbine components in multi-body simulations for cost and load reduction. European Wind Energy Association (EWEA) Offshore Conference (Frankfurt, Germany), 2013.

Publications in Conference Proceedings
[3]      Müller, K., Sandner, F., Bredmose, H., Azcona, J., Manjock, A. and Pereira, R. Improved tank  test procedures for scaled floating offshore wind turbines. International Wind Engineering Conference IWEC (Hannover, Germany), 2014, link author version.
[2]      Sandner, F. and Cheng, P.W. Conceptual design of floating wind turbines. European Wind Energy Academy (EAWE) 9th PhD Seminar on Wind Energy in Europe (Visby, Sweden), 2013, link author version.
[1]      Sandner, F., Schlipf, D., Matha, D., Seifried, R. and Cheng, P.W. Reduced nonlinear model of a spar-mounted floating wind turbine. German Wind Energy Conference DEWEK (Bremen, Germany), 2012, link author version.

Conference Contribution without paper
[2]      Sandner, F., Amann, F., Azcona, J., Munduate, X., Bottasso, C.L., Campagnolo, F., Bredmose, H., Manjock, A., Pereira, R. and Robertson, A. Model building and scaled testing of 5MW and 10MW semi-submersible floating wind turbines. EERA Deepwind (Trondheim, Norway), 2015, link.
[1]      Sandner, F., Yu, W. and Cheng, P.W. Parameterized dynamic modelling approach for conceptual dimensioning of a floating wind turbine system. EERA Deepwind (Trondheim, Norway), 2015, link.

Seminars and Invited Presentations
 [1]     Sandner, F. 2nd International Summer School on Stochastic Dynamics of Wind Turbines and Wave Energy Absorbers: Reduced Order Modeling of Floating Offshore Wind Turbines (Aalborg, Denmark), 2014, link.

Patents
[1]      Sandner, F., Matha, D., Molins, C. and Campos, A. Estructura flotante para soporte de turbinas eólicas marinas y procedimiento para su construcción e instalación, Patent no. P201430259, (Spain), 2014.

Research reports
[16]    Yu, W., Müller, K., Lemmer, F., Schlipf, D., Bredmose, H., Borg, M., Landbø, T., Andersen, H., Galvan, J., Sánchez-Lara, M.J.. Public definition of the two LIFES50+ 10MW floater concepts. H2020-LIFES50+ Deliverable 4.2, 2018.
[15]    Azcona, J., Vittori, F., Schmidt Paulsen, U., Savenije, F., Kapogiannis, G., Karvelas, X., Manolas, D., Voutsinas, S., Amann, F., Faerron-Guzmán, R., Lemmer, F. Design Solutions for 10MW Floating Offshore Wind Turbines. FP7-INNWIND.EU Deliverable D4.37, 2017, link.
[14]    Heilskov, N. F., Azcona, J., Bredmose, H., Borisade, F., Kim, Y., Klein, L., Koch, C., Lemmer, F., Lutz, T., Manjock, A., Mauser, L., Manolas, D., Pegalajar-Jurado, A., Robertson, A., Jonkman, J., Wendt, F., Vittori, Felipe Voutsinas, S. Results of codes validation with wave tank tests, FP7-INNWIND.EU Deliverable D4.25, 2016.
[13]    Lemmer, F., Amann, F., Raach, S., & Schlipf, D. Definition of the SWE-TripleSpar floating platform for the DTU 10MW reference wind turbine, 2016. Tech. rep. Retrieved from http://www.ifb.uni-stuttgart.de/windenergie/downloads[12]   Borisade, F, Gruber, J., Hagemann, L., Kretschmer, M, Lemmer, F., Müller, K., Schlipf, D., Nguyen, N.-D. and Vita, L. State of the art FOWT design practice and guidelines. H2020-LIFES50+ Deliverable D7.4, 2016, link.
[11]    Lopez-Mendia, J., Galván, J., Aguirre-Suso, G., Gullaksan Straume, J., González, A., Lemmer, F., Schlipf, D., Borg, M., Jones, W. Wind turbine controller adapted to each concept, H2020-LIFES50+ Deliverable 1.4, 2016.
[10]    Lemmer, F., Müller, K., Bredmose, H., Borg, M., and Pegalajar Jurado, A. Simple numerical models for upscaled design. H2020-LIFES50+ Deliverable D4.1, 2016.
[9]      Heilskov, N. F., Azcona, J., Bredmose, H., Borisade, F., Kim, Y., Klein, L., Koch, C., Lemmer, F., Lutz, T., Manjock, A., Mauser, L., Manolas, D., Pegalajar-Jurado, A., Robertson, A., Jonkman, J., Wendt, F., Vittori, Felipe Voutsinas, S. Results of codes validation with wave tank tests, FP7-INNWIND.EU Deliverable D4.25, 2016.
[8]      Lemmer, F., Azcona, J., Matha, D., Amann, F., Campagnolo, F., Bredmose, H., & Montinari, P. (2014). Floating wind model tests école centrale de Nantes, FP7- INNWIND.EU Deliverable 4.24,  2014, link.
[7]     Sandner, F., Yu, W., Matha, D., Azcona, J., Munduate, X., Grela, E., Voutsinas, S. and Natarajan, A. Innovative concepts for floating structures. FP7-INNWIND.EU Deliverable D4.33, 2014, link.
[6]      Voutsinas, S., Manolas, D., Sandner, F. and Manjock, A. Integrated design methods and controls for floating offshore wind turbines. FP7-INNWIND.EU Deliverable D4.23, 2014.
[5]      Azcona, J., Bekiropoulos, D., Bredmose, H., Fischer, A., Heilskov, N.F., Krieger, A., Lutz, T.,  Manjock, A., Manolas, D., Matha, D., Meister, K., Pereira, R., Ronby, J., Sandner, F. and Voutsinas, S. State-of-the-art and implementation of design tools for floating structures. FP7-INNWIND.EU Deliverable D4.21, 2013, link.
[4]      Sandner, F. and Matha, D. Model description and loads analysis results of the selected FOWT design. KIC-InnoEnergy AFOSP Deliverable D3.1, 2014.
[3]      Molins, C., Matha, D., Sandner, F., Campos, A., Trubat, P. and Roca, P. Prototype pre-design. KIC-InnoEnergy AFOSP Deliverable D2.2, 2013.
[2]      Molins, C., Matha, D., Schlipf, D., Sandner, F., Campos, A., Trubat, P., Abón, G. and Raach, S. Prototype conceptual design. KIC-InnoEnergy AFOSP Deliverable D2.1, 2013.
[1]      Matha, D., Molins, C., Campos, A., Schlipf, D., Sandner, F., Abón, G. and Raach, S. Analysis of the state of the art. KIC-InnoEnergy AFOSP Deliverable D1.1, 2013.

Supervised theses
[15]    Yu, W. (2016). Modeling, Control Design and Testing of a Scaled Floating Offshore Wind Turbine. Master thesis. University of Stuttgart.
[14]    Gabriel, D. (2016). Development of a Controller for Floating Offshore Wind Turbines. Bachelor thesis. University of Stuttgart.
[13]    Koch, C. (2016). Validierung eines gekoppelten Simulationsmodells schwimmender Windkraftanlagen mit Hilfe von Modellversuchen. Master thesis, University of Stuttgart.
[12]    Mayer, B. (2016). Validierung eines reduzierten gekoppelten Simulationsmodells schwimmender Windkraftanlagen mit Hilfe von Modellversuchen. Study project. University of Stuttgart.
[11]    Abdelwahab, M. (2016). Dynamic Modeling of a Floating Wind Turbine and Development of an Advanced Controller. Master thesis. University of Stuttgart.
[10]    Walia, D. (2015). Evaluation of Methods for the Computation of Structural Loads on Platforms for Floating Wind Turbines. Study project. TU Braunschweig.
[9]      Walia, D. (2015). Coupled Simulation of Strucutral Loads of Floating Wind Energy Converters. TU Braunschweig.
[8]      Amann, F. (2014). Skalierung, Auslegung und Konstruktion eines Modells einer schwimmenden Windkraftanlage. Diplomarbeit, University of Stuttgart.
[7]      Yu, Wei (2014). Auslegung einer innovativen schwimmenden Plattform für große Offshore Windkraftanlagen. Studienarbeit, University of Stuttgart.
[6]      Brecht, F. (2013). Gültigkeit und Vergleich verschiedener hydrodynamischer Modellierungsmethoden für schwimmende Windkraftanlagen. Bachelor thesis, University of Stuttgart.
[5]      Ramin, J. (2013). Vergleichende Untersuchung der hydrodynamischen Eigenschaften verschiedener Modelle schwimmender Windkraftanlagen. Bachelor thesis, University of Stuttgart.
[4]      Ullah, J. (2013). Vergleich zweier Plattformen schwimmender Windkraftanlagen in Hinblick auf das Betriebsverhalten und die Energieausbeute. Bachelor thesis. University of Stuttgart.
[3]      Abón Olivera, G. (2013). Structural dynamic behavior of a floating platform for offshore wind turbines. Bachelor thesis. University of Stuttgart/Universitat Politècnica de Catalunya.
[2]      Härer, Arne (2013). Optimierung von Plattformen  für Schwimmende WKA. Diplomarbeit. University of Stuttgart/MesH Engineering.
[1]      Raach, S. (2013). Model Predictive Control of a Floating Wind Turbine with Individual Pitch Control. Diplomarbeit. University of Stuttgart.

Others

  • Kutzbach, F. Beyer, F. Sandner, D.Schlipf, Windkraftanlagen lernen das Schwimmen - Inseln für Windräder in tiefem Wasser, ORF, May 2013 http://oe1.orf.at/programm/340377
  • Grotelüschen, F., Sandner, F., Bekiropoulos, D., Heege, A.: Schwimmende Windräder , WDR Leonardo, November 2012.

Teaching
Nachhaltige Energie- und Verkehrssysteme

Involvement in previous and ongoing research projects

  • H2020-LIFES50+, Qualification of innovative floating substructures for 10MW wind turbines and water depths greater than 50m
  • FP-7 INNWIND.EU, Innovative wind conversion systems (10-20MW) for offshore applications
  • KIC-AFOSP, Alternative floating offshore support platforms for wind turbines
  • FP-7 FLOATGEN, Demonstration and benchmarking of a wind turbine in Atlantic Ocean
Lebenslauf:
  • 2006-2012: Dipl.-Ing. of Mechanical Engineering, University of Stuttgart, Germany.
    Specialisation in computational dynamics and control, fluid dynamics and hydraulic machinery.
  • 2010: Visiting scholar at University of Michigan, Ann Arbor/USA, German-American Fulbright Commission.
  • 2010: Internship Alstom Power AG, Gas Turbine Mechanical Integration.
  • 2011: Internship GIZ - Gesellschaft für Internationale Zusammenarbeit gGmbH, Benin/West Africa.
  • 2012: Diploma thesis "Reduced Model Design of a Floating Wind Turbine" at SWE.
  • since 10/2012: Researcher and PhD candidate at SWE.