Leichtbau / Simulation

Simulation und Auslegung von Leichtbaustrukturen

Der Forschungsbereich Leichtbau und Simulation beschäftigt sich mit vielfältigen Fragestellung rund um die digitale Entwicklung von Leichtbaustrukturen. Mithilfe numerischer Simulationen, Ähnlichkeitsmechanik sowie maschinellem Lernen (ML) werden präzise und anwendungsorientierte Lösungsansätze zur Materialmodellierung, Struktursimulation und Prozesssimulation entwickelt. Neben individuellen Modellierungsansätzen steht die Verbindung der Teilbereich im Vordergrund. So kann der Entwicklungsprozess durch Multi-Skalen- und Multi-Modell-Simulationsansätze ganzheitlich erfasst und optimiert werden. Darüber hinaus bietet die sensorbasierte Verknüpfung des digitalen Zwillings mit dem realen Produkt die Möglichkeit der datenbasierten und automatisierten Weiterentwicklung von Leichtbaustrukturen.

Themengebiete

Code / Programme

Auf der Seite Code / Programme können Sie diverse Skripte und Programme zur Mikroskopischen und Mesoskopischen Modellgenerierung, Ausführung und Auswertung von Simulationen, strukturelle Evaluierung und Hilfsmittel zur Fertigungsoptimierung finden, welche als Bestandteil aktiver Forschungsprojekte entwickelt und fortlaufend modifiziert und verbessert werden.

Abschlussarbeiten

Aktuell ausgeschriebene Abschlussarbeiten der Forschungsgruppe Leichtbau finden Sie in der ILIAS-Gruppe "Studentische Abschlussarbeiten". Die Auflistung ist nur für Studierende der Universität Stuttgart einsehbar. Bitte treten Sie hierzu der ILIAS-Gruppe bei. Es besteht keine Gewähr auf Vollständigkeit. Sollte das Thema Ihrer Wahl nicht verfügbar sein, können Sie sich bei den jeweiligen Mitarbeitern auch initiativ um eine Abschlussarbeit bewerben.

Publikationen

Zeitschriften/Bücher

  1. 2023

    1. Facciotto, S.; Simacek, P.; Advani, S. G.; u. a. „Modeling formation and evolution of voids in unsaturated dual scale preforms in Resin Transfer Molding processes“. In: Composites Part A: Applied Science and Manufacturing. (Composites Part A: Applied Science and Manufacturing), 173 , S. 107675, doi: 10.1016/j.compositesa.2023.107675.
    2. Gil Pérez, M.; Mindermann, P.; Zechmeister, C.; u. a. „Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems“. In: Journal of Computational Design and Engineering. (Journal of Computational Design and Engineering), 10 (4), S. 1460–1478, doi: 10.1093/jcde/qwad064.
    3. Böhringer, P.; Sommer, D.; Haase, T.; u. a. „A strategy to train machine learning material models for finite element simulations on data acquirable from physical experiments“. In: Computer Methods in Applied Mechanics and Engineering. (Computer Methods in Applied Mechanics and Engineering), 406 , S. 115894, doi: 10.1016/j.cma.2023.115894.
  2. 2022

    1. Czichos, R.; Bergmann, T.; Moldering, F.; u. a. „Comparison of numerical modelling approaches for the residual burst pressure of thick type IV composite overwrapped pressure vessels related to low-velocity impact“. In: International Journal of Pressure Vessels and Piping. (International Journal of Pressure Vessels and Piping), 199 , S. 104770, doi: 10.1016/j.ijpvp.2022.104770.
    2. Hügle, S.; Genc, E.; Dittmann, J.; u. a. „Offline Robot-Path-Planning and Process Simulation for the Structural Analysis of Coreless Wound Fibre-Polymer Composite Structures“. In: Key Engineering Materials. (Key Engineering Materials), 926 , S. 1445--1453, doi: 10.4028/p-970esd.
    3. Sommer, D.; Haufe, A.; Middendorf, P. „A Machine Learning Material Model for Structural Adhesives in Finite Element Analysis“. In: International Journal of Adhesion and Adhesives. (International Journal of Adhesion and Adhesives), S. 103160, doi: 10.1016/j.ijadhadh.2022.103160.
    4. Schwingel, J.; Middendorf, P. „Topological design using multivariate laminate stackings for tailored fiber placement“. In: Journal of Composite Materials. (Journal of Composite Materials), doi: 10.1177/00219983221085721.
    5. Pérez, M. G.; Zechmeister, C.; Kannenberg, F.; u. a. „Computational co-design framework for coreless wound fibre–polymer composite structures“. In: Journal of Computational Design and Engineering. Oxford University Press (OUP) (Journal of Computational Design and Engineering), 9 (2), S. 310--329, doi: 10.1093/jcde/qwab081.
  3. 2021

    1. Schlotthauer, T.; Middendorf, P. „Hollow stereolithographic structures reinforced by short carbon fibres“. In: JEC Composite Magazine. (JEC Composite Magazine), S. 21--24.
    2. Ackermann, A. C.; Carosella, S.; Rettenmayr, M.; u. a. „Rheology, dispersion, and cure kinetics of epoxy filled with amine-- and non--functionalized reduced graphene oxide for composite manufacturing“. In: Journal of Applied Polymer Science. (Journal of Applied Polymer Science), 139 (8), S. 51664, doi: 10.1002/app.51664.
    3. Yong, A. X. H.; Aktas, A.; May, D.; u. a. „Experimental characterisation of textile compaction response: A benchmark exercise“. In: Composites Part A: Applied Science and Manufacturing. (Composites Part A: Applied Science and Manufacturing), 142 , S. 106243, doi: 10.1016/j.compositesa.2020.106243.
    4. Urban, F.; Armbruster, B.; Middendorf, P. „Development and validation of a method for linear-viscoelastic characterization of the dynamic complex modulus of short-fiber reinforced plastics using flexural resonances“. In: Polymer Testing. (Polymer Testing), 94 , S. 107055, doi: 10.1016/j.polymertesting.2021.107055.
    5. Facciotto, S.; Simacek, P.; Advani, S. G.; u. a. „Modeling of anisotropic dual scale flow in RTM using the finite elements method“. In: Composites Part B: Engineering. (Composites Part B: Engineering), 214 , S. 108735, doi: 10.1016/j.compositesb.2021.108735.
  4. 2020

    1. Rihaczek, G.; Klammer, M.; Basnak, O.; u. a. „Curved Foldable Tailored Fiber Reinforcements for Moldless Customized Bio-Composite Structures. Proof of Concept: Biomimetic NFRP Stools“. In: Polymers. (Polymers), 12 (9), doi: 10.3390/polym12092000.
    2. Nebe, M.; Soriano, A.; Braun, C.; u. a. „Analysis on the mechanical response of composite pressure vessels during internal pressure loading: FE modeling and experimental correlation“. In: Composites Part B: Engineering. (Composites Part B: Engineering), S. 108550, doi: 10.1016/j.compositesb.2020.108550.
    3. Czichos, R.; Bareiro, O.; Pickett, A. K.; u. a. „Experimental and numerical studies of process variabilities in biaxial carbon fiber braids“. In: International Journal of Material Forming. (International Journal of Material Forming), doi: 10.1007/s12289-020-01541-4.
    4. Muhs, F.; Thissen, S.; Middendorf, P. „Virtual process chain for optimization of sandwich foldcores under flatwise compression“. In: Thin-Walled Structures. (Thin-Walled Structures), 157 , S. 107121, doi: 10.1016/j.tws.2020.107121.
    5. Sachse, R.; Pickett, A. K.; Middendorf, P. „Simulation of impact and residual strength of thick laminate composites“. In: Composites Part B: Engineering. (Composites Part B: Engineering), 195 , S. 108070, doi: 10.1016/j.compositesb.2020.108070.
    6. Zink, D.; Huber, M.; Middendorf, P. „FormPATCH - Forming of Complex Composite Structures using Patching Technologies“. In: Procedia Manufacturing. (Procedia Manufacturing), 47 , S. 100--106, doi: 10.1016/j.promfg.2020.04.143.
    7. Engelfried, M.; Aichele, B.; Middendorf, P. „Investigation of the Friction between Dry and Wetted Carbon Filaments“. In: Procedia Manufacturing. (Procedia Manufacturing), 47 , S. 60--64, doi: 10.1016/j.promfg.2020.04.130.
    8. Damm, A. M.; Spitzmüller, C.; Raichle, A. T. S.; u. a. „Deep learning for impact detection in composite plates with sparsely integrated sensors“. In: Smart Materials and Structures. (Smart Materials and Structures), 29 (12), S. 125014, doi: 10.1088/1361-665X/abb644.
  5. 2019

    1. Raichle, A.; Ritter, F.; Vinot, M.; u. a. „Weiterentwicklung des Digitalen Prototyps zum Digitalen Fingerabdruck“. In: ATZ-Magazin 03/2019. (ATZ-Magazin 03/2019).
    2. May, D.; Aktas, A.; Advani, S. G.; u. a. „In-Plane Permeability Characterization of Engineering Textiles Based On Radial Flow Experiments: A Benchmark Exercise“. In: Composites Part A: Applied Science and Manufacturing. (Composites Part A: Applied Science and Manufacturing), doi: 10.1016/j.compositesa.2019.03.006.
    3. Pickett, A. K. Introduction to Process and Mechanical Modelling of Engineering Composites. Stuttgart: IFB (Institute of Aircraft design).
    4. Klett, Y.; Muhs, F.; Middendorf, P. „Analysis of Static and Dynamic Behavior of Thick-Walled PALEO Elements“. In: Volume 5B: 43rd Mechanisms. (Volume 5B: 43rd Mechanisms), doi: 10.1115/DETC2019-97155.
    5. McGarrigle, C.; Fernández, D.; Middendorf, P.; u. a. „Extruded high-temperature thermoplastic tufting yarns for enhanced mechanical properties of composites“. In: Journal of Reinforced Plastics and Composites. (Journal of Reinforced Plastics and Composites), 24 , S. 073168441988636, doi: 10.1177/0731684419886368.
    6. Diermann, V.; Middendorf, P. „Automatic Evaluation of Structural Integrity in Crashworthiness Simulations Using Image Analysis“. In: International Journal of Automotive Technology. (International Journal of Automotive Technology), 20 (1), S. 65--72, doi: 10.1007/s12239-019-0006-y.
    7. Dittmann, J.; Middendorf, P. Der digitale Prototyp: Ganzheitlicher digitaler Prototyp im Leichtbau für die Großserienproduktion. ARENA2036. 1st ed. 2019. (ARENA2036).
    8. Harder, N.; Klett, Y.; Park, S.; u. a. „Bauphysikalische Untersuchung von Sandwichelementen“. In: Bauphysik. (Bauphysik), 41 (6), S. 314--323, doi: 10.1002/bapi.201900025.
    9. Pickett, A. K. Process and mechanical modelling of engineering composites. Stuttgart: IFB (Institute of Aircraft design).
    10. Fernández, D.; Begemann, B.; Middendorf, P.; u. a. „Investigation of the buckling and load-bearing behaviour of selectively stitched stiffened CFRP panels under multiaxial loading“. In: CEAS Aeronautical Journal. (CEAS Aeronautical Journal), 10 (3), S. 703--717, doi: 10.1007/s13272-018-0343-y.
  6. 2018

    1. Grzeschik, M.; Klett, Y.; Middendorf, P. „Reality Check - Mechanical Potential of Tessellation-based Foldcore Materials“. In: Origiami 7. (Origiami 7).
    2. Muhs, F.; Klett, Y.; Middendorf, P. „Automated numerical process chain for the design of folded sandwich cores“. In: Origiami 7. (Origiami 7).
    3. Wellekötter, J.; Baz, S.; Schwingel, J.; u. a. „Kohlenstofffasern im Kreislauf halten“. In: Kunststoffe 9. (Kunststoffe 9).
    4. Czichos, R.; Bareiro, O.; Pickett, A. K.; u. a. „Influence of process induced defects for biaxial carbon fiber braids“. In: IOP Conference Series: Materials Science and Engineering. (IOP Conference Series: Materials Science and Engineering), 406 , S. 012047, doi: 10.1088/1757-899X/406/1/012047.
    5. Wagner, T.; Heimbs, S.; Franke, F.; u. a. „Experimental and numerical assessment of aerospace grade composites based on high-velocity impact experiments“. In: Composite Structures. (Composite Structures), 204 , S. 142--152, doi: 10.1016/j.compstruct.2018.07.019.
    6. Birkefeld, K.; Pickett, A.; Middendorf, P. „8.5 Virtual Design and Optimisation of Braided Structures Considering Production Aspects of the Preform“. In: Comprehensive Composite Materials II. Elsevier (Comprehensive Composite Materials II), S. 85--97, doi: 10.1016/B978-0-12-803581-8.10054-2.
    7. Kraemer, M.; Middendorf, P.; Bauernhansl, T. „Investigation on the influence of humidity on the topography of surfaces of polymeric class A carbon fiber reinforced plastics“. In: Journal of Composite Materials. (Journal of Composite Materials), 52 (30), S. 4247--4260, doi: 10.1177/0021998318778891.
    8. Middendorf, P.; Böhler, P.; Gnädinger, F.; u. a. „8.3 Design Study for a Carbon Composite Manipulator“. In: Comprehensive Composite Materials II. Elsevier (Comprehensive Composite Materials II), S. 47--60, doi: 10.1016/B978-0-12-803581-8.10048-7.
    9. Kraemer, M.; Dauser, T.; Middendorf, P.; u. a. „Correlation between subjective perception and objective parameters for the characterisation of fibre print-through on surfaces of class A carbon fibre reinforced plastics via multidimensional scaling“. In: Composites Part A: Applied Science and Manufacturing. (Composites Part A: Applied Science and Manufacturing), 115 , S. 166--174, doi: 10.1016/j.compositesa.2018.09.025.
    10. Pickett, A. Process and Mechanical Modelling of Engineering Composites. University Stuttgart: IFB.
  7. 2017

    1. Heidenreich, B.; Koch, D.; Kraft, H.; u. a. „C/C--SiC sandwich structures manufactured via liquid silicon infiltration“. In: Journal of Materials Research. (Journal of Materials Research), 32 (17), S. 3383--3393, doi: 10.1557/jmr.2017.208.
    2. Sachse, R.; Pickett, A. K.; Essig, W.; u. a. „Experimental and numerical investigation of the influence of rivetless nut plate joints on fatigue crack growth in adhesively bonded composite joints“. In: International Journal of Fatigue. (International Journal of Fatigue), 105 , S. 262--275, doi: 10.1016/j.ijfatigue.2017.08.001.
  8. 2016

    1. Nezami, F.; Fuhr, J.-P.; Schierle, D.; u. a. „Hochqualitative CFK-Umformteile durch synchrone Bauteil- und Prozessentwicklung“. In: Lightweight Design. (Lightweight Design), 9 (2), S. 52--58, doi: 10.1007/s35725-016-0012-1.
    2. Fischer, S. „A Material Model for FE-Simulation of UD Composites“. In: Applied Composite Materials. (Applied Composite Materials), 23 (2), S. 197--217, doi: 10.1007/s10443-015-9456-1.
    3. Böhler, P.; Dittmann, J.; Michaelis, D.; u. a. „Process Simulation as Part of Industry 4.0“. In: Lightweight Design. (Lightweight Design), 9 , doi: 10.1007/s35725-016-0070-4.
    4. Jäger, S.; Pickett, A.; Middendorf, P. „A Discrete Model for Simulation of Composites Plate Impact Including Coupled Intra- and Inter-ply Failure“. In: Applied Composite Materials. (Applied Composite Materials), 23 (2), S. 179--195, doi: 10.1007/s10443-015-9455-2.
    5. Bulat, M.; Ahlborn, H.; Gnädinger, F.; u. a. „Braided carbon fiber composites“. In: Advances in Braiding Technology. Elsevier (Advances in Braiding Technology), S. 383--394, doi: 10.1016/B978-0-08-100407-4.00015-6.
    6. Böhler, P.; Pickett, A. K.; Middendorf, P. „Finite element method (FEM) modeling of overbraiding“. In: Advances in Braiding Technology. Elsevier (Advances in Braiding Technology), S. 457--475, doi: 10.1016/B978-0-08-100407-4.00019-3.
    7. Mallach, A.; Härtel, F.; Heieck, F.; u. a. „Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement“. In: Journal of Composite Materials. (Journal of Composite Materials), doi: 10.1177/0021998316670477.
    8. Böhler, P.; Dittmann, J.; Michaelis, D.; u. a. „Prozesssimulation als Basis für die Industrie 4.0“. In: Lightweight Design. (Lightweight Design), 9 (6), S. 14--19, doi: 10.1007/s35725-016-0062-4.
    9. Finkenwerder, F. A.; Geistbeck, M.; Middendorf, P. „Study on the validation of ring filament winding methods for unidirectional preform ply manufacturing“. In: Advanced Manufacturing: Polymer & Composites Science. (Advanced Manufacturing: Polymer & Composites Science), 2 (3–4), S. 103--116, doi: 10.1080/20550340.2016.1262090.
  9. 2015

    1. Sturm, R.; Schatrow, P.; Klett, Y. „Multiscale Modeling Methods for Analysis of Failure Modes in Foldcore Sandwich Panels“. In: Applied Composite Materials. (Applied Composite Materials), 22 (6), S. 857--868, doi: 10.1007/s10443-015-9440-9.
    2. Hoffmann, M.; Zimmermann, K.; Bautz, B.; u. a. „A new specimen geometry to determine the through-thickness tensile strength of composite laminates“. In: Composites Part B: Engineering. (Composites Part B: Engineering), 77 , doi: 10.1016/j.compositesb.2015.03.020.
    3. Stens, C.; Middendorf, P. „Computationally efficient modeling of the fatigue behaviour of composite materials“. In: International Journal of Fatigue. (International Journal of Fatigue), 80 , doi: 10.1016/j.ijfatigue.2015.05.001.
    4. Sirtautas, J.; Pickett, A.; George, A. „Materials Characterisation and Analysis for Flow Simulation of Liquid Resin Infusion“. In: Applied Composite Materials. (Applied Composite Materials), 22 (3), S. 323--341, doi: 10.1007/s10443-014-9411-6.
    5. Böhler, P.; Carosella, S.; Goetz, C.; u. a. „Path Definition for Tailored Fiber Placement Structures Using Numerical Reverse Draping Approach“. In: Key Engineering Materials. (Key Engineering Materials), 651–653 , S. 446--451, doi: 10.4028/www.scientific.net/KEM.651-653.446.
    6. Kärger, L.; Bernath, A.; Fritz, F.; u. a. „Development and validation of a CAE chain for unidirectional fibre reinforced composite components“. In: Composite Structures. (Composite Structures), 132 , S. 350--358, doi: 10.1016/j.compstruct.2015.05.047.
    7. Fischer, S. „Aluminium foldcores for sandwich structure application: Mechanical properties and FE-simulation“. In: Thin-Walled Structures. (Thin-Walled Structures), 90 , S. 31--41, doi: 10.1016/j.tws.2015.01.003.
  10. 2014

    1. Sturm, R.; Klett, Y.; Kindervater, Ch.; u. a. „Failure of CFRP airframe sandwich panels under crash-relevant loading conditions“. In: Composite Structures. (Composite Structures), 112 , S. 11--21, doi: 10.1016/j.compstruct.2014.02.001.
    2. Priess, T.; Sause, M.; Fischer, D.; u. a. „Detection of delamination onset in laser-cut carbon fiber transverse crack tension specimens using acoustic emission“. In: Journal of Composite Materials. (Journal of Composite Materials), 49 , doi: 10.1177/0021998314552003.
    3. Weber, M. J.; Middendorf, P. „Semi-analytical skin buckling of curved orthotropic grid-stiffened shells“. In: Composite Structures. (Composite Structures), 108 , S. 616--624, doi: 10.1016/j.compstruct.2013.09.031.
    4. Härtel, F.; Böhler, P.; Middendorf, P. „An Integral Mesoscopic Material Characterization Approach“. In: Key Engineering Materials. (Key Engineering Materials), 611–612 , S. 280--291, doi: 10.4028/www.scientific.net/KEM.611-612.280.
    5. Gnädinger, F.; Karcher, M.; Henning, F.; u. a. „Holistic and Consistent Design Process for Hollow Structures Based on Braided Textiles and RTM“. In: Applied Composite Materials. (Applied Composite Materials), 21 (3), S. 541--556, doi: 10.1007/s10443-013-9370-3.
  11. 2013

    1. Sirtautas, J.; Pickett, A.; Lépicier, P. „A mesoscopic model for coupled drape-infusion simulation of biaxial Non-Crimp Fabric“. In: Composites Part B: Engineering. (Composites Part B: Engineering), 47 , S. 48--57, doi: 10.1016/j.compositesb.2012.09.088.
    2. Böhler, P.; Härtel, F.; Middendorf, P. „Identification of Forming Limits for Unidirectional Carbon Textiles in Reality and Mesoscopic Simulation“. In: Key Engineering Materials. (Key Engineering Materials), 554–557 , S. 423--432, doi: 10.4028/www.scientific.net/KEM.554-557.423.
    3. Pickett, A. K.; Erber, A.; von Reden, T.; u. a. „Comparison of analytical and finite element simulation of 2D braiding“. In: Plastics, Rubber and Composites. (Plastics, Rubber and Composites), 38 (9–10), S. 387--395, doi: 10.1179/146580109X12540995045769.
    4. Galappathithi, U. I. K.; Pickett, A.; Draskovic, M.; u. a. „The Effect of Ply Waviness for the Fatigue Life of Composite Wind Turbine Blades“. In: Renewable Energy & Power Quality Journal (RE&PQJ). (Renewable Energy & Power Quality Journal (RE&PQJ)), (11), S. 1195--1199.
  12. 2012

    1. Birkefeld, K.; Röder, M.; von Reden, T.; u. a. „Characterization of Biaxial and Triaxial Braids: Fiber Architecture and Mechanical Properties“. In: Applied Composite Materials. (Applied Composite Materials), 19 (3–4), S. 259--273, doi: 10.1007/s10443-011-9190-2.
  13. 2009

    1. Pickett, A. K.; Fouinneteau, M. R. C.; Middendorf, P. „Test and Modelling of Impact on Pre-Loaded Composite Panels“. In: Applied Composite Materials. (Applied Composite Materials), 16 (4), S. 225--244, doi: 10.1007/s10443-009-9089-3.
    2. Heimbs, S.; Heller, S.; Middendorf, P.; u. a. „Low velocity impact on CFRP plates with compressive preload: Test and modelling“. In: International Journal of Impact Engineering. (International Journal of Impact Engineering), 36 , doi: 10.1016/j.ijimpeng.2009.04.006.
    3. Pickett, A.; Sirtautas, J.; Erber, A. „Braiding Simulation and Prediction of Mechanical Properties“. In: Applied Composite Materials. (Applied Composite Materials), 16 (6), S. 345--364, doi: 10.1007/s10443-009-9102-x.
    4. Keck, R.; Machunze, W.; Dudenhausen, W.; u. a. „Design, analysis, and manufacturing of a carbon-fibre-reinforced polyetheretherketone slat“. In: Proceedings of Mechanical Engineering Vol. 223 Part G: J. Aerospace Engineering. (Proceedings of Mechanical Engineering Vol. 223 Part G: J. Aerospace Engineering), 223 , doi: 10.1243/09544100JAERO515.
    5. Heimbs, S.; Middendorf, P.; Hampf, C.; u. a. „Aircraft Sandwich Structures with Folded Core under Impact Load“. In: Composite Solutions, Aero & Space. (Composite Solutions, Aero & Space), 3 .
    6. Erber, A.; Drechsler, K. „Torsional Performance and Damage Tolerance of Braiding Configurations“. In: JEC Magazine. (JEC Magazine), 52 .
  14. 2008

    1. Drechsler, K.; Middendorf, P.; Van Den Broucke B.; u. a. „Advanced Composite Materials - Technologies, Performance and Modelling“. In: Guédra-Degeorges, Didier; Ladevèze, Pierre (Hrsg.) Course on emerging techniques for damage prediction and failure analysis of laminated composite structures. Toulouse: Cépaduès-éd (Course on emerging techniques for damage prediction and failure analysis of laminated composite structures), S. 147--197.
  15. 2006

    1. Greve, L.; Pickett, A. K. „Modelling damage and failure in carbon/epoxy non-crimp fabric composites including effects of fabric pre-shear“. In: Composites Part A: Applied Science and Manufacturing. (Composites Part A: Applied Science and Manufacturing), 37 (11), S. 1983--2001, doi: 10.1016/j.compositesa.2005.12.012.

Tagungs-/Konferenzbeiträge

  1. 2023

    1. Krischler, R.; Blandl, M.; Kliewe, M.; u. a. „Comparison of Different Material Systems for Filament Winding Based on the Split-Disk Experiment and Setup of a Digital Twin“. In: Rieser, Jasper; Endress, Felix; Horoschenkoff, Alexander; u. a. (Hrsg.) Proceedings of the Munich Symposium on Lightweight Design 2022. Cham: Springer International Publishing and Imprint Springer Vieweg S. 40--50 doi: 10.1007/978-3-031-33758-1_4.
  2. 2022

    1. Czichos, R.; Miene, A.; Ahlborn, H.; u. a. „Mesoscopic modeling of braided structures by means of laser triangulation measurement and mesh superposition technique“. Proceedings of 14th International Conference on Textile Composites (TexComp 14).
    2. Czichos, R.; Middendorf, P.; Bergmann, T. „Numerical modelling of the residual burst pressure of thick composite pressure vessels after low-velocity impact loading“. In: Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems. CRC Press S. 157--158 doi: 10.1201/9781003348450-73.
    3. Wolf, M.; Kaiser, B.; Hügle, S.; u. a. „Data Model for Adaptive Robotic Construction in Architecture“. In: Procedia CIRP. Elsevier BV S. 1035–1040 doi: 10.1016/j.procir.2022.05.104.
  3. 2021

    1. Raichle, A.; Damm, A.; Middendorf, P. „Data Requirements for Detecting Collision Positions on Fiber Composite Plates Using Artificial Intelligence“. NAFEMS World Congress.
    2. Springmann, M.; Mirzaei, S.; Middendorf, P. „Printing Path Based Modeling of FFF Meso-structures for Finite Element Analysis“. NAFEMS World Congress.
    3. Sommer, D.; Vinod Kumar Mitruka, Tarun Kumar Mitruka; Middendorf, P. „Automation of LS-DYNA’s Material Model Driver for Generation of Training Data for Machine Learning based Material Models“. In: 13th European LS-DYNA Conference 2021.
    4. Facciotto, S.; Pickett, A.; Middendorf, P.; u. a. „Numerical and Experimental Study of Dual Scale Flow in RTM with Anisotropic Tow Saturation“. NAFEMS World Congress.
    5. Thissen, S.; Middendorf, P. „Numerical analysis of imperfections in Miura Ori sandwich cores using isogeometric analysis“. In: Proceedings of the IASS Annual Symposium; 7th International Conference on Spatial Structures.
    6. Czichos, R.; Bernhardt, Y.; Dittmann, J.; u. a. „Modellierung von Mikroschäden in glasfaserverstärkten Kunststoffen“. Beiträge zum 27. Stuttgart Kunststoffkolloquium. Stuttgart.
    7. Czichos, R.; Miene, A.; Ahlborn, H.; u. a. „Realistic mesoscopic modelling of braided fibre composite structures using laser triangulation“. In.:
  4. 2020

    1. Facciotto, S.; Sommer, D.; Haufe, A.; u. a. „Modelling Defects of Unhardened Adhesives Resulting from Handling and Warpage: Viscous Fingering“. SCAP 2020 - Stuttgart Conference on the Automotive Production. Stuttgart.
    2. Dittmann, J.; Vinot, M.; Middendorf, P.; u. a. „Simulation supported manufacturing of profiled composite parts with the braiding technique“. SCAP 2020 - Stuttgart Conference on the Automotive Production. Stuttgart.
    3. Klett, Y.; Middendorf, P.; Muhs, F.; u. a. „Comparison of soft curved crease surrogate hinges“. Intl. Design Engineering Technical Conferences and Computers and Information in Engineering Conference. St. Louis, MO, USA.
    4. Klett, Y.; Middendorf, P.; Muhs, F.; u. a. „Comparison of Soft Curved Crease Surrogate Hinges“. In: Volume 10: 44th Mechanisms. doi: 10.1115/DETC2020-22333.
    5. Sommer, D.; Schauwecker, F.; Middendorf, P. „A Study on the Transfer of GISSMO Material Card Parameters from 2D- to 3D-Discretization“. 16th International LS-DYNA Conference. Virtual Event.
  5. 2019

    1. Ackermann, A. C.; Carosella, S.; Middendorf, P.; u. a. „Einfluss der Oberflächenfunktionalisierung von Graphenpartikeln auf die Eigenschaften und die Verarbeitung von Nanokompositen“. Hybride Materialien - Nano goes Macro. Nuremberg.
    2. Facciotto, S.; Pickett, A. K.; Middendorf, P. „Effect of infusion parameters and defects of the reinforcement on the generation of porosity in fiber reinforced composites“. ESI Forum Deutschland. Berlin.
    3. Klett, Y.; Middendorf, P.; Muhs, F.; u. a. „Exploration of Compliant Hinges in Origami-based Structures“. IASS Symposium 2019. Barcelona, Spain.
    4. Springmann, M. „Verbindung lastpfad-optimierter FVK Strukturen mit additiv gefertigten Elementen“. AFBW AG Simulation. Denkendorf.
    5. Klett, Y.; Middendorf, P.; Muhs, F.; u. a. „Exploration of Compliant Hinges in Origami-based Structures“. IASS Annual Symposium 2019 -- Structural Membranes 2019. Barcelona, Spain.
    6. Dittmann, J.; Friedrichs, A.; Nassen, S.; u. a. „Transient Dual-Phase Void Prediction in Microscopic Yarn Models With Openfoam“. ICCM22 - 22nd International Conference on Composite Materials. Melbourne, Australia.
    7. Czichos, R.; Bareiro, O.; Pickett, A. K.; u. a. „Numerical Modelling of Biaxial Carbon Fiber Braids Considering Process Variabilities“. ICCM22 - 22nd International Conference on Composite Materials. Melbourne, Australia.
    8. Klett, Y. „Paper, planes and more -- Exploring the potential of origami, from aerospace to architecture.“. Seminar at Georgia Tech. Atlanta, USA.
    9. Sachse, R.; Jochens, M.; Ross, M.; u. a. „Low-Velocity Impact Simulation with a Special Focus on Thick Composites“. ICCM22 - 22nd International Conference on Composite Materials. Melbourne, Australia.
    10. Klett, Y. „Von Stricklieseln und Papierfliegern“. WiWeb Kolloquium 2019. Erding.
    11. Dittmann, J.; Friedrichs, A.; Facciotto, S.; u. a. „Dual Phase Void Prediction in Microscopic Yarn Models“. ICCM22 - 22nd International Conference on Composite Materials. Melbourne, Australia.
    12. Oei, M.; Klett, Y.; Harder, N.; u. a. „Modelling the Flow and Heat Transfer Characteristics of Perforated Foldcore Sandwich Composites for Application in Room Air Conditioning“. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver, Canada doi: 10.1109/COASE.2019.8842913.
    13. Middendorf, P. „Composites 4.0: From Design to Automated Manufacturing“. ICCM22 - 22nd International Conference on Composite Materials. Melbourne, Australia.
    14. Klett, Y. „When four creases meet: Technical tessellation tales“. IDETC-CIE 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Anaheim, USA.
    15. Klett, Y.; Middendorf, P. „Exploration of Plastically Annealed Lamina Emergent Origami Structures“. EMI Engineering Mechanics Institute Conference 2019. Pasadena, USA.
    16. Schauwecker, F.; Moncayo, D.; Andrade, F.; u. a. „Modeling of Bolts using the GISSMO Model for Crash Analysis“. 12th European LS-DYNA Conference. Koblenz.
    17. Althammer, F.; Moncayo, D.; Middendorf, P. „Approach for Modelling Thermoplastic Generative Designed Parts“. 12th European LS-DYNA Conference. Koblenz.
    18. J. Dittmann; P. Middendorf „Permeabilitätsmessungen bei technischen Textilien und die Durchführung von Benchmarkstudien“. 26. Stuttgarter Kunststoffkolloquium. Stuttgart, Germany.
    19. Kretschmer, M.; Jonkman, J.; Cheng, P. W. „Validation of FAST.Farm considering structural loads at alpha ventus“. Wind Energy Science Conference 2019. Cork doi: 10.5281/zenodo.3550524.
  6. 2018

    1. Neumann, A.; Pickett, A.; Middendorf, P. „Measurement of Size Effects in Laminate Compression Specimens“. Conamet-Sam. Valdivia, Chile.
    2. Fial, J.; Harr, M.; Böhler, P.; u. a. „Automated wet compression moulding of load-path optimized TFP preforms with low cycle times“. 13th international conference on textile composites (Texcomp). Milan, Italy.
    3. Facciotto, S.; Pouchias, A.; Tifkitsis K. I.; u. a. „Variability propagation, process monitoring and simulation tools for predictive modelling of RTM processes“. 8th EASN-CEAS International Workshop. Glasgow, Scotland.
    4. Muhs, F.; Klett, Y.; Middendorf, P. „Automated Numerical Process Chain for the Design of Folded Sandwich Cores“. 7th International Meeting on Origami, Science, Mathematics, and Education. Oxford, England.
    5. Klett, Y. „PALEO: Plastically Annealed Lamina Emergent Origami“. ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec, Canada.
    6. Fial, J.; Hüttl, J.; Middendorf, P.; u. a. „Ganzheitliche Untersuchung der Nasspresstechnologie anhand ausgewählter Prozess- und Simulationsrouten“. 5. Technologietag hybrider Leichtbau. Stuttgart.
    7. Facciotto, S.; Pickett, A.; Lingua A.; u. a. „Effect of Fabric Deformation and Flow Velocity on Generation of Porosity in Infusion Processes“. FPCM - 14th International Conference on Flow Processes in Composite Materials. Lule\aa,~Sweden.
    8. Engelfried, M.; Antonin Mavoungou, L.; Verspohl, I.; u. a. „Generating Representative Volume Elements of Yarns with Non-Circular Filaments’ Cross-Sections“. FPCM - 14th International Conference on Flow Processes in Composite Materials. Lule\aa, Sweden.
    9. Schauwecker, F.; Moncayo, D.; Beck, M.; u. a. „Investigation of the Failure Behavior of Bolted Connections under Crash Loads and a Novel Adaption to an Enhanced Abstracted Bolt Model“. 15th International LS-DYNA Conference. Detroit, USA.
    10. Dittmann, J.; Böhler, P.; Vinot, M.; u. a. „Der Digitale Prototyp“. Technologietag Hybrider Leichtbau. Stuttgart.
    11. Draskovic, M.; Pickett, A. K.; Middendorf, P. „In-Situ Image Processing of Fatigue Damaged Cross-Ply Laminates Coupled With Simulation to Predict Residual Strength Degradation“. ECCM 18 - 18th European Conference on Composite Materials. Athens, Greece.
    12. Schwingel, J.; Wellekötter, J.; Baz, S.; u. a. „Resource and Energy Efficient Manufacturing of Automotive Lightweight Parts Made of Recycled Material“. ECCM 18 - 18th European Conference on Composite Materials. Athens, Greece.
    13. Diermann, V.; Middendorf, P.; Boese C.; u. a. „Towards an Automatic Evaluation of a Car Floor Module in a Pole Crash Load Case“. 15th International LS-DYNA Conference. Detroit, USA.
    14. Sommer, D.; Bender, B.; Eidmann, F.; u. a. „Manufacturing of hybrid steel-FRP specimens for the characterization of material properties“. 29th SICOMP Conference on Manufacturing and Design of Composites. Lule\aa,~Sweden.
    15. Klett, Y.; Middendorf, P. „BiSKiTs: Bistable Kirigami Tessellations“. EMI Engineering Mechanics Institute Conference 2018. Boston, USA.
    16. Klett, Y. „Kleine Falten, große Wirkung: Kostengünstige und leistungsfähige Leichtbaulösungen.“. 2. Kongress Innovation+: Papier, Textil & Folie. Regensburg.
    17. Klett, Y. „Kostengünstige und leistungsfähige Lösungen für multifunktionalen Leichtbau“. innovation+: papier, textil & folie. Regensburg.
  7. 2017

    1. Draskovic, M.; Pickett, A. K.; Carosella, S.; u. a. „Accelerated Residual Strength After Fatigue Testing Using In-Situ Image Processing for Damage Detection“. SAMPE Conference 2017. Stuttgart.
    2. Klett, Y. „Overview of Mechanical Properties of Foldcore-based Sandwich Structures“. The Second International Workshop on Origami Engineering, Tianjin, China. Tianjin, China.
    3. Muhs, F.; Middendorf, P. „Mechanical Performance of Curved Sandwich Foldcores“. SAMPE Conference 2017. Stuttgart.
    4. Klett, Y. „Kleine Knicke, große Wirkung -- faltungsbasierte Sandwichkerne“. 2. Bremer Faserverbundtage. Bremen.
    5. Dittmann, J.; Middendorf, P. „Numerische Permeabilitätsvorhersage von textilen RTM-Preforms“. CC Austria, RTM - Next Steps. Friedrichshafen.
    6. Klett, Y.; Zeger, C.; Middendorf, P. „Experimental Characterization of Pressure Loss Caused by Flow Through Foldcore Sandwich Structures“. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, OH, USA doi: 10.1115/DETC2017-67890.
    7. Klett, Y. „Experimental Characterization of Pressure Loss Caused by Flow Through Foldcore Sandwich Structures“. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, OH, USA.
    8. Dittmann, J.; Hügle, S.; Seif, P.; u. a. „Permeability Prediction Using Porous Yarns in a Dual-Scale Simulation with Openfoam“. ICCM21 - 21st International Conference on Composite Materials. Xi’an, China.
    9. Wellekötter, J.; Baz, S.; Schwingel, J.; u. a. „Recycling of composites -- A new approach minimizes downgrading“. EUROPE/AFRICA CONFERENCE DRESDEN 2017 -- POLYMER PROCESSING SOCIETY PPS. Dresden, Germany doi: 10.1063/1.5084841.
    10. Sommer, D.; Silak, I. „Untersuchung von hybriden Klebeverbindungen während des Aushärteprozesses in einem gläsernen Ofen“. CCeV Engineering/Klebtechnik/NDE. Augsburg.
    11. Klett, Y.; Middendorf, P.; Sobek, W.; u. a. „Potential of origami-based shell elements as next-generation envelope components“. IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich doi: 10.1109/AIM.2017.8014135.
    12. Schwingel, J.; Baz, S.; Wellekötter, J.; u. a. „Resource and Energy Efficient Manufacturing of Automotive Lightweight Parts Made of Recycled Material“. BW Forschungstag 2017. Stuttgart.
    13. Böhler, P.; Dittmann, J.; Michaelis, D.; u. a. „Manufacturing Simulation as Part of the Digital Prototype“. 11th European LS-DYNA Conference 2017. Salzburg, Austria.
    14. Liebold, C.; Haufe, A.; Vinot, M.; u. a. „The Digital Prototype as Part of Envyo - Developent History and Applications within the ARENA2036 Environment“. 11th European LS-DYNA Conference. Salzburg, Austria.
    15. Neumann, A.; Pickett, A. K.; Middendorf, P. „Finite Element and Experimental Stress Analysis of Laminated Composite Compression Specimens“. 8th International Conference on Composites Testing and Model Identification. Leuven, Belgium.
    16. Facciotto, S.; Dittmann, J.; Pickett, A. K.; u. a. „Characterization and Modelling of Local Compaction Effect on Permeability in Infusion Processes“. 8th International Conference on Composites Testing and Model Identification. Leuven, Belgium.
    17. Draskovic, M.; Pickett, A. K.; Middendorf, P. „Influence of Ply Waviness on the Residual Strength After Fatigue in GFRP - Comparison of Localized and Uniform Defects“. 8th International Conference on Composites Testing and Model Identification. Leuven, Belgium.
    18. Engelfried, M.; Fial, J.; Tartler, M.; u. a. „A Mesoscopic Approach for Draping Simulation of Preforms Manufactured by Direct Fibre Placement“. 20th International ESAFORM Conference on Material Forming. Dublin, Ireland.
    19. Dittmann, J.; Dollinger, F.; Kaufmann L.; u. a. „Numerical Permeability Prediction with OpenFOAM“. 25. Stuttgarter Kunststoffkolloquium. Stuttgart.
    20. Wellekötter, J.; Bonten, C.; Baz, S.; u. a. „Resource-Efficient Lightweight Design Due to New Recycling Concept“. 25. Stuttgarter Kunststoffkolloquium. Stuttgart.
  8. 2016

    1. Schwingel, J. „Resource and Energy Efficient Manufacturing of Automotive Lightweight Parts Made of Recycled Material“. International Textile Conference 2016 (Aachen-Dresden-Denkendorf). Dresden.
    2. Dittmann, J.; Böhler, P.; Michaelis, D.; u. a. „DigitPro -- Aufbau eines digitalen Prototyps für den industriellen Großeinsatz 4.0“. NAFEMS Seminar - Simulation von Composites -- Bereit für Industrie 4.0. Hamburg.
    3. Dittmann, J.; Middendorf, P. „ARENA2036 -- Above-and-Beyond“. LS-Dyna User Forum. Bamberg.
    4. Middendorf, P. „DigitPro: Ganzheitlicher digitaler Prototyp für industriellen FVK-Leichtbau“. Forel Kolloquium.
    5. Klett, Y.; Muhs, F.; Middendorf, P. „Behavior of Congruent Tessellation Stacks Under Torsional Loading“. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2016). Charlotte, USA.
    6. Dittmann, J.; Hügle, S.; Middendorf, P. „Numerical 3D Permeability Prediction Using Computational Fluid Dynamics Techniques“. FPCM - 13th Internation Conference on Flow Processes in Composite Materials. Kyoto, Japan.
    7. Sachse, R.; Pickett, A. K.; Gnädinger, M.; u. a. „Mechanisms to Arrest a Crack in the Adhesive Bondline of Fatigue Loaded CFRP-Joints Using a Rivetless Nutplate Joint“. ECCM17 – 17th European Conference on Composite Materials. Munich.
    8. Dittmann, J.; Middendorf, P. „DigitPro - Ganzheitlicher digitaler Prototyp im Leichtbau für die Großserienproduktion“. Fachtagung „Wissenschaft und Wirtschaft nachhaltig vernetzen“. Berlin.
    9. Zink, D.; Awe, C.; Middendorf, P. „Automated Design Approach and Potential Assessment of Composite Structures: Fast Analytical Engineering Tool for Multiple Load Cases“. ECCM17 – 17th European Conference on Composite Materials. Munich.
    10. Dittmann, J.; Michaelis, D.; Böhler, P.; u. a. „DigitPro - Validating The Link Between Braiding Simulation, Infiltration and Mechanical Testing“. ECCM17 – 17th European Conference on Composite Materials. Munich.
    11. Engelfried, M.; Nosek, T.; Heieck, F.; u. a. „Mesoscopic draping simulation of out-of-autoclave prepregs and experimental validation“. ECCM17 – 17th European Conference on Composite Materials. Munich.
    12. Muhs, F.; Klett, Y.; Middendorf, P. „Influence of Geometry and Base Material on the Compressive Properties of Foldcores“. ECCM17 – 17th European Conference on Composite Materials. Munich.
    13. Vinot, M.; Holzapfel, M.; Michaelis, D.; u. a. „Numerische Prozesskette für die Auslegung von geflochtenen Fahrzeugkomponenten - Nutzen und Herausforderungen“. Symposium Faszination Hybrider Leichtbau. Wolfsburg.
    14. Middendorf, P.; Michaelis, D.; Böhler, P.; u. a. „ARENA2036 - DigitPro: Development of a Virtual Process Chain“. 16th Stuttgart International Symposium on Automotive and Engine Technology. Stuttgart.
  9. 2015

    1. Böhler, P.; Middendorf, P. „Mesoskopisches Drapieren - Simulation und Vailidierung“. LBZ-Tagung. Pfinztal.
    2. Adebahr, W.; Sachse, R.; Middendorf, P.; u. a. „Crack growth monitoring at CFRP adhesive bondings“. Polymer Processing Society Conference 2015. Graz, Austria doi: 10.1063/1.4965563.
    3. Fuhr, J.-P.; Middendorf, P. „Validierung der virtuellen Auslegungsprozesskette für schichtbasierte Faserverbundstrukturen“. ESI DACH Forum. Bamberg.
    4. Klett, Y.; Middendorf, P. „Kinematic analysis of congruent multilayer tessellations“. ASME International Design Engineering Technical Conferences. Boston, USA.
    5. Weber, M. J.; Middendorf, P. „Semi-analytical panel buckling of cylindrical composite grid-stiffened structures comprising discrete stiffener formulations“. 18th International Conference on Composite Structures (ICCS18). Lisbon, Portugal.
    6. Gabrielli, R. A.; Seelmann, J.; Großmann, A.; u. a. „System Architecture of a Lunar Industry Plant Using Regolith“. 30th ISTS. Kobe, USA.
    7. Großmann, A.; Gabrielli, R. A.; Herdrich, G.; u. a. „Overview of the MultiRob 3D Lunar Industrial Development Project“. 30th ISTS. Kobe, USA.
    8. Sachse, R.; Pickett, A. K.; Adebahr, W.; u. a. „Experimental investigation of mechanical fasteners regarding their influence on crack growth in adhesively bonded CFRP-joints subjected to fatigue loading“. in 20th Internactional Conference on Composite Materials. Copenhagen.
    9. Gizik, D.; Metzner, C.; Middendorf, P. „First Study on using Heavy Tow Fibers for Textile Preform Processes in the Aerospace Industry“. ICCM20 - 20th International Conference on Composite Materials. Copenhagen, Denmark.
    10. Gabrielli, R. A.; Mathies, J.; Großmann, A.; u. a. „Space Propulsion Considerations for a Lunar Take Off Industry Based on Regolith“. 30th ISTS. Kobe, USA.
    11. Böhler, P.; Carosella, S.; Götz, C.; u. a. „Reverse Draping - oder - Woher kommen Fasergerechte Ablagepfade für den TFP-Prozess““. Compoform 2015. Munich.
    12. Weber, M. J.; Middendorf, P. „Semi-analytical global and panel buckling of composite grid-stiffened cylindrical shells“. 3rd International Conference on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures. Braunschweig doi: 10.13140/RG.2.1.3744.7200.
    13. Dittmann, J.; Neu, A.; Middendorf, P. „Permeabilitätsbestimmung für die optimierte Herstellung von endlosfaserverstärkten Kunststoffen“. 24. Stuttgarter Kunststoffkolloquium. Stuttgart.
    14. Fey, P.; Michaelis, D.; Middendorf, P.; u. a. „Charakterisierung anisotroper Schädigung in CFK mittels Akustischer Doppelbrechung“. 24. Stuttgarter Kunststoffkolloquium. Stuttgart.
    15. Dittmann, J. „Permeabilitätsbestimmung für die optimierte Herstellung von Faser-Kunststoff-Verbunden“. 24. Stuttgarter Kunststoffkolloquium. Stuttgart.
    16. Adebahr, W.; Rahammer, M.; Sachse, R.; u. a. „Crack growth monitoring at CFK adhesive bondings“. 24. Stuttgarter Kunststoffkolloquium. Stuttgart.
    17. Fuhr, J.-P.; Middendorf, P. „From draping to fracture - Tool chain validation for ply-based composite structures“. Composites Virtual Prototyping Expert Seminar. Stuttgart.
    18. Dittmann, J.; Böhler, P.; Michaelis, D.; u. a. „DigitPro - Digital Prototype Build-up Using the Example of a Braided Structure“. 2. International Merge Technologies Conference. Chemnitz.
    19. Sachse, R.; Pickett, A. K.; Käß, M.; u. a. „Numerical Simulation of Fatigue Crack Growth in the Adhesve Bondline of Hybrid CFRP Joints“. COMPOSITES 2015. Bristol.
    20. Middendorf, P.; Böhler, P.; Dittmann, J.; u. a. „DigitPro - Holistic digital prototype for lightweight design in large-scale production“. JEC Singapore. Singapore.
    21. Dittmann, J. „Permeabilitätsbestimmung und der Weg zu aussagekräftigen Füllsimulationen“. AFBW AG Simulation. Fellbach.
    22. Middendorf, P.; Sommer-Dittrich, T.; Böhler, P.; u. a. „Forschungscampus ARENA2036 - Leichtbau durch Funktionsintegration und Aufbau einer digitalen Prozesskette“. ATZ Tagung. Stuttgart.
  10. 2014

    1. Fuhr, J.-P.; Böhler, P.; Heieck, F.; u. a. „Optische Preformanalyse zur 3D-Validierung der Drapier- und Flechtsimulation“. FCC2014. Augsburg.
    2. Kärger, L.; Böhler, P.; Magagnato, D.; u. a. „Virtuelle Prozesskette für Bauteile aus Hochleistungsfaserverbund“. FCC2014. Augsburg.
    3. Fuhr, J.-P.; Feindler, N.; Middendorf, P. „Virtuelle Bewertung von Drapiereinflüssen auf die Steifigkeit und Festigkeit von schichtbasierten Faserverbundstrukturen“. NAFEMS Seminar. Leipzig.
    4. Kärger, L.; Fritz, F.; Magagnato, D.; u. a. „Development Stage and Application of a Virtual Process Chain for RTM Components“. Proceedings NAFEMS Seminar “Simulation of Composites – A Closed Process Chain”. Leipzig.
    5. Klett, Y.; Middendorf, P. „Kinematic exploration of 1-DOF origami mechanisms“. Proceedings of the the 16th International Conference on Geometry and Graphics. Innsbruck, Austria.
    6. Dittmann, J. „Permeability determination of resistive welded carbon fabrics“. FPCM. Enschede.
    7. Middendorf, P. „ARENA2036 - Lightweight design and flexible production for next generation automobiles“. ICPC Konferenz. Munich.
    8. Fuhr, J.-P.; Baumann, J.; Härtel, F.; u. a. „Effects of in-plane waviness on the properties of carbon composites - experimental and numerical analysis“. 6th International Conference on Composites Testing and Model Identification. Aalborg, Denmark.
    9. Böhler, P.; Härtel, F.; Middendorf, P. „Mesoskopisches Drapieren: Simulation und Validierung“. SAMPESymposium Deutschland 2014. Stuttgart.
    10. Fuhr, J.-P.; Feindler, N.; Middendorf, P. „Berücksichtigung von Fertigungseinflüssen in der Strukturauslegung von schichtbasierten Faserverbundwerkstoffen“. SAMPESymposium Deutschland 2014. Stuttgart.
  11. 2013

    1. Middendorf, P.; Drechsler, K. „Networks and Private Public Partnerships for R&D on Automotive Composites“. IQPC Automotive Composites. Köln.
    2. Böhler, P.; Härtel, F.; Pickett, A. K.; u. a. „Mesoskopischer Ansatz für die Drapiersimulation von unidirektionalen vernähten Textilien“. ESI DACH Forum. Wiesbaden.
    3. Böhler, P.; Härtel, F.; Middendorf, P. „Drapieren: Simulation und Verifikation“. CCeV. Meitingen.
    4. Weber, M. J.; Middendorf, P. „Weight estimation of composite grid--stiffened fuselage structures critical to skin buckling“. 3rd EASN Association International Workshop on Aerostructures. Milano, Italy.
    5. Klett, Y. „Realtime rigid folding algorithm for quadrilateral- based 1-DOF tessellations“. ASME International Design Engineering Technical Conferences. Portland, USA.
    6. Kärger, L.; Magagnato, D.; Schön, A.; u. a. „Aufbau einer durchgängigen CAE-Kette durch Verknüpfung von Drapier-, Formfüll- und Struktursimulation zur ganzheitlichen Bewertung von Bauteilen aus Hochleistungsfaserverbunden“. DGM Tagung Verbundwerkstoffe / Werkstoffverbunde 2013. Karlsruhe.
    7. Weber; Middendorf, P. „Semi-analytical skin buckling of curved orthotropic grid-stiffened shells“. Proceedings of ICCS17. Porto, Portugal.
    8. Middendorf, P. „Potenzial und Einsatzgebiete von FKV für Leichtbauanwendungen“. 23. Stuttgarter Kunststoff Kolloquium. Stuttgart.
    9. Pickett, A. K.; Sirtautas, J.; Masseria „Process and challenges for resin infusion simulation of large structural composite parts“. CCeV. Stuttgart.
    10. Böhler, P.; Michaelis, D.; Heieck, F.; u. a. „Numerical prediction and experimental validation of triaxially braided fibre architecture on curved mandrels“. TexComp-11. Leuven.
    11. Pickett, A. K.; Sirtautas, J.; Masseria „Challenges of VARI process simulation: materials testing and simulation approaches“. CCeV. Augsburg.
    12. Draskovic, M.; Galappathithi, U. I. K.; Pickett, A. K.; u. a. „Influence of ply waviness on residual strength and fatigue degradation of composite wind turbine blades“. ICCM19. Montreal.
    13. Pickett, A. K.; Sirtautas, J.; Masseria „Resin infusion simulation for large structural composite parts“. TexComp-11. Leuven.
    14. Galappathithi, U. I. K.; Pickett, A. K.; Draskovic, M.; u. a. „The Effect of Ply Waviness for the Fatigue Life of Composite Wind Turbine Blades“. ICREPQ 13  (RE&PQJ). Bilbao.
    15. Kärger, L.; Schön, A.; Fritz, F.; u. a. „Virtual Process Chain for an integrated assessment of high-performance composite structures“. NAFEMS World Congress. Salzburg, Austria.
    16. Sirtautas, J.; Pickett, A. K. „Fabric permeability testing and their use in infusion simulation“. CompTest. Aalborg.
  12. 2012

    1. Liebau; van Campen; Sommer-Dittrich, T.; u. a. „On the Effect of Draping Strategy on FE-Based Draping Simulation of Basic and Complex 3D Geometries for Automated Preforming“. 3rd Aircraft Structural Design Conference. Delft.
    2. Liebau; van Campen; Sommer-Dittrich, T.; u. a. „An Approach for Investigating the complexity of an Automated Draping Process Using the Finite-Element Method“. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012). Wien.
    3. Klett, Y. „Isometrically folded structures in near net shape core applications“. ICSS10  - International Conference on Sandwich Structure. s.
    4. Middendorf, P.; Jäger, S.; Prowe „Damage Tolerance of CFRP Airframe Structures: Criteria and Concepts“. DLR Bauweisen Kolloquium. Stuttgart.
    5. Middendorf, P.; Birkefeld, K. „Entwicklungstrends in der Faserverbund-Simulation“. Fachkongress Composite Simulation. Fellbach.
    6. Birkefeld, K.; Middendorf, P. „Optimization of Braided Structures With a Genetic Algorithm Considering Production Aspects“. SETEC 12. Lucerne.
    7. Birkefeld, K.; von Reden, T.; Middendorf, P. „Material Quality of Braided Fuselage Profiles“. AIAA SDM Conference. Honolulu.
    8. Birkefeld, K. „Analysis and Process Simulation of braided structures“. EUCOMAS. Zürich.
    9. Böhler, P.; Bouc; Ahlborn, H.; u. a. „Innovative joining of aircraft profiles with braided holes“. ECCM 15. Venedig.
    10. Liebau; van Campen; Sommer-Dittrich, T.; u. a. „User- and Process-Defined Benchmark of Kinematic and FE-Draping Codes and Integration into the CAx Process Chain“. NAFEMS European Conference Multiphysics Simulation. Frankfurt.
  13. 2011

    1. Fischer; Drechsler, K. „Aluminium Faltkerne für den Einsatz in Sandwichstrukturen“. Landshuter Leichtbau-Colloquium. Landshut.
    2. Bender; Fischer; Drechsler, K. „Optimizing a Foldcore concerning density specific stiffness properties“. SEICO. Paris.
    3. Werchner; Havar; Drechsler, K. „Influence of design and loading on the mechanical behaviour of thick composite lugs“. DGLR Kongress. Bremen.
    4. Feindler, N.; Fuhr, J.-P.; Böhler, P.; u. a. „Simulation und Dimensionierung von energieabsorbierenden Faserverbundstrukturen für automobile Anwendungen“. NWC11  NAFEMS 2011.
    5. Pickett, A. K.; Birkefeld, K. „Analysis and process simulation of textile structures“. SAMPE Technical Conference. Zürich.
    6. Leutza; Kluepfelb; Dumontb; u. a. „FE-Simulation of the Diaphragm Draping Process for NCF on a Macro-Scale Level“. 14th International ESAFORM Conference on Material Forming ESAFORM. Belfast.
    7. Mildner; Dölle; Drechsler, K.; u. a. „Influence of reinforced metal structures using fibre reinforced plastics“. SAMPE EUROPE 32nd International Technical Conference. Paris.
    8. Feindler, N.; Döll, J.; Drechsler, K. „CFK in automobilen Crashstrukturen: Anforderungen, Dimensionierung und Simulation“. ATZlive. Werkstoffe im Automobilbau.
  14. 2010

    1. Drechsler, K.; Klett, Y. „Technical Tessellations - Hidden Beauties“. 5OSME Conference. Singapore.
    2. Werchner; Havar; Drechsler, K. „Design Guidelines and Analysis Methods for Composite Load Introduction Structures“. Simulia Konferenz. Heidelberg.
    3. Drechsler, K. „Funktionsintegrierter Leichtbau“. 9. Symposium Material Innovativ. Augsburg.
    4. Kehrle, R. „Forschung und Entwicklung von Faserverbund- und Sandwichleichtbau im Flugzeug- und Automobilbau“. VDI Stuttgart. Germany.
    5. Kehrle, R. „Leichtbausandwichwerkstoffe“. Yachtbau Symposium. Hamburg.
    6. Birkefeld, K.; Pickett, A. K.; Witzel, V.; u. a. „Procedures for optimisation of structural composite aircraft profiles considering manufacturing constraints“. 3rd EUCOMAS. Berlin.
    7. Grzeschik, M.; Drechsler, K. „Experimental studies on folded cores“. 9th International Conference on Sandwich Structures. Los Angeles.
    8. Birkefeld, K.; Erber, A.; Drechsler, K. „Virtual Design Process for Braided Drive Shafts“. SAMPE SEICO Conference. Paris.
    9. Kehrle, R. „Leichtbauplatten mit Foldcore Kernen“. Möbelleichtbau-Symposium. Lemgo.
    10. Beilstein; Drechsler, K.; Rudolph, S. „Gewichtsabschätzungen von geklebten und geschweißten Strukturverbindungen im Flugzeugvorentwurf“. DLRK. Hamburg.
    11. Rudolph, S.; Fuhr, J.-P.; Beilstein „A validation method using design languages for weight approximation formulae in the early aircraft design phase“. EUCOMAS. Mannheim.
  15. 2009

    1. George, A.; Drechsler, K.; Holmberg „The Permeability of Tackified, Stitched, and Braided Carbon Fiber Textiles: Experi-mental Characterization and Design Modeling“. SAMPE. Baltimore.
    2. Grave; Birkefeld, K.; von Reden, T.; u. a. „Simulation of 3D overbraiding - Solutions and Challenges“. Second World Conference on 3D Fabrics and their Applications. Greenville.
    3. George, A.; Drechsler, K.; Holmberg „The Permeability of Carbon Fiber Preforming Materials: Sensitivity to Fabric Geometry“. 20th Annual International SICOMP Conference. Pite\aa.
    4. Klett, Y.; Drechsler, K.; Kehrle, R.; u. a. „Cutting Edge Cores: Multifunktionale Faltkernstrukturen“. 4. Landshuter Leichtbau-Colloquium. Landshut.
    5. Kehrle, R. „Sandwichbauweisen in der Luftfahrt“. Leichtbaukolloquium. Landshut.
    6. Johnson, A.; Kilchert, S.; Fischer; u. a. „New structural composite core materials“. Composites. Gold Coast.
    7. Fischer; Grzeschik, M.; Drechsler, K. „Experimental and numerical parameter study of foldcores“. Vortrag auf der Sampe Europe Technical Conference. Bristol.
    8. Kehrle, R. „Faserverbundwerkstoffe“. IHK. Reutlingen.
    9. Kehrle, R. „Chancen durch Faserverbundwersktoffe im Anlagenbau - Potenziale und Risiken“. CCe.V. Augsburg. Germany.
    10. Fischer; Grzeschik, M.; Drechsler, K. „Potential of high performance foldcores made out of Peek“. SETEC Europe. Bristol.
    11. Drechsler, K. „Leichtbaupotential von Faserverbundwerkstoffen im Maschinenbau“. IHK Innovationspodium. Augsburg.
    12. Klett, Y.; Drechsler, K. „Cutting edge cores: Multi- functional Core Structures“. DGLR Jahrestagung.
  16. 2008

    1. Klett, Y.; Drechsler, K. „Cutting-Edge Cores - Origami Meets Aerospace“. International Mathematica User Conference. Champaign.
    2. Fischer; Drechsler, K.; Kilchert, S.; u. a. „Mechanical tests for foldcore base material properties“. CompTest.
    3. Fischer; Drechsler, K. „Aluminium Foldcores for Sandwich Structure Application. Cellular Metals for Structural and Functional Applications“. CELLMET.
    4. Fischer; Drechsler, K. „Aluminium foldcores for sandwich structure application“. CompTest.
    5. Klett, Y.; Drechsler, K. „Cutting edge cores: Aerospace and origami“. 9th International Mathematica Symposium. Maastricht.
  17. 2007

    1. Stüve; Gries; Drechsler, K.; u. a. „Simulation of braiding technology along the complete process chain“. International European SAMPE Conference. Paris.
    2. Klett, Y.; Kehrle, R.; Drechsler, K.; u. a. „High Tech Origami“. Composite Days. Innsbruck.
    3. Klett, Y.; Drechsler, K. „Design of Multifunctional Folded Core Structures for Aerospace Sandwich Applications“. 1st CEAS European Air and Space Conference.
    4. Beilstein; Drechsler, K. „A methodology of weight prediction for joints in aircraft design“. SAWE. Madrid.
    5. Moncayo; Wagner; Drechsler, K. „Numerical Simulation of Low Velocity Impact Delamination in Composite Materials“. CanCom. Montreal.
  18. 2006

    1. Drechsler, K.; Kehrle, R.; Klett, Y.; u. a. „Faltwabenkerne für multifunktionale Leichtbaustrukturen“. 2nd MATERIALICA Composites Congress  Composites in Automotive Aerospace. München.
    2. Drechsler, K. „Origami-like Sandwich Structures for Aerospace Applications“. SAMPE International Conference. Long Beach.
    3. Drechsler, K.; Kehrle, R.; Kolax „Folded Core Sandwich Structures for advanced next generation fuselage concepts“. SAMPE Europe Technical Conference. Toulouse.
    4. Drechsler, K. „Leichtbau in Natur und Technik“. HIN Kolloquium. Neckarsulm.
  19. 2005

    1. Kehrle, R.; Drechsler, K. „Manufacturing, Simulation and performance of sandwich structures with folded core“. 25th International SAMPE Conference. Paris.
    2. Drechsler, K. „Origami and aerospace - a new approach for sandwich structures“. Keynote presentation at International SAMPE Conference. Tokyo.
    3. Kehrle, R.; Drechsler, K. „Manufacturing and performance of folded honeycomb structures“. SAMPE. Long Beach.
    4. Drechsler, K. „Leichtbau im Fahrzeug“. Euroforum-Konferenz. München.
    5. Kehrle, R.; Pfaff „Mechanische Eigenschaften neuartiger Sandwichkerne“. 6. Nationales Symposium SAMPE. Stuttgart.
    6. Drechsler, K. „Neueste Entwicklungen der Faserverbundtechnologie für den Flugzeug- und Automobilbau“. Vortrag VDI Arbeitskreis Produktionstechnik. Stuttgart.

Gruppenleiter

Dieses Bild zeigt Ruben Czichos

Ruben Czichos

M.Sc.

Wissenschaftlicher Mitarbeiter, Gruppenleiter der Forschungsgruppe Composite Simulation

Zum Seitenanfang